clamtest(comm, groups, coverage.limit = 10, specialization = 2/3, npoints = 20, alpha = 0.05/20)
"summary"(object, ...)
"plot"(x, xlab, ylab, main, pch = 21:24, col.points = 1:4, col.lines = 2:4, lty = 1:3, position = "bottomright", ...)comm.
coverage.limit total counts per habitat.
"clamtest".
legend for specification details.
Legend not shown if position = NULL.
"clamtest"),
with columns:
Species: species name (column names from comm),
Total_*A*: total count in habitat A,
Total_*B*: total count in habitat B,
Classes: species classification, a factor with
levels Generalist, Specialist_*A*,
Specialist_*B*, and Too_rare.
*A* and *B* are placeholders for habitat names/labels found in the
data.The summary method returns descriptive statistics of the results.
The plot method returns values invisibly and produces a bivariate
scatterplot of species total abundances in the two habitats. Symbols and
boundary lines are shown for species groups.
specialization threshold, the model classifies species into
one of four groups: (1) generalists; (2) habitat A specialists; (3)
habitat B specialists; and (4) too rare to classify with confidence.
data(mite)
data(mite.env)
sol <- with(mite.env, clamtest(mite, Shrub=="None", alpha=0.005))
summary(sol)
head(sol)
plot(sol)
Run the code above in your browser using DataLab