clamtest(comm, groups, coverage.limit = 10, specialization = 2/3, npoints = 20, alpha = 0.05/20)
"summary"(object, ...)
"plot"(x, xlab, ylab, main, pch = 21:24, col.points = 1:4, col.lines = 2:4, lty = 1:3, position = "bottomright", ...)
comm
.
coverage.limit
total counts per habitat.
"clamtest"
.
legend
for specification details.
Legend not shown if position = NULL
.
"clamtest"
),
with columns:
Species
: species name (column names from comm
),
Total_*A*
: total count in habitat A,
Total_*B*
: total count in habitat B,
Classes
: species classification, a factor with
levels Generalist
, Specialist_*A*
,
Specialist_*B*
, and Too_rare
.
*A*
and *B*
are placeholders for habitat names/labels found in the
data.The summary
method returns descriptive statistics of the results.
The plot
method returns values invisibly and produces a bivariate
scatterplot of species total abundances in the two habitats. Symbols and
boundary lines are shown for species groups.
specialization
threshold, the model classifies species into
one of four groups: (1) generalists; (2) habitat A specialists; (3)
habitat B specialists; and (4) too rare to classify with confidence.
data(mite)
data(mite.env)
sol <- with(mite.env, clamtest(mite, Shrub=="None", alpha=0.005))
summary(sol)
head(sol)
plot(sol)
Run the code above in your browser using DataLab