vegan (version 2.4-2)

plot.cca: Plot or Extract Results of Constrained Correspondence Analysis or Redundancy Analysis


Functions to plot or extract results of constrained correspondence analysis (cca), redundancy analysis (rda) or constrained analysis of principal coordinates (capscale).


"plot"(x, choices = c(1, 2), display = c("sp", "wa", "cn"), scaling = "species", type, xlim, ylim, const, correlation = FALSE, hill = FALSE, ...) "text"(x, display = "sites", labels, choices = c(1, 2), scaling = "species", arrow.mul, head.arrow = 0.05, select, const, axis.bp = TRUE, correlation = FALSE, hill = FALSE, ...) "points"(x, display = "sites", choices = c(1, 2), scaling = "species", arrow.mul, head.arrow = 0.05, select, const, axis.bp = TRUE, correlation = FALSE, hill = FALSE, ...) "scores"(x, choices = c(1,2), display = c("sp","wa","cn"), scaling = "species", hill = FALSE, ...) "scores"(x, choices = c(1,2), display = c("sp","wa","cn"), scaling = "species", const, correlation = FALSE, ...) "summary"(object, scaling = "species", axes = 6, display = c("sp", "wa", "lc", "bp", "cn"), digits = max(3, getOption("digits") - 3), correlation = FALSE, hill = FALSE, ...) "print"(x, digits = x$digits, head = NA, tail = head, ...) "head"(x, n = 6, tail = 0, ...) "tail"(x, n = 6, head = 0, ...)


x, object
A cca result object.
Axes shown.
Scores shown. These must include some of the alternatives species or sp for species scores, sites or wa for site scores, lc for linear constraints or ``LC scores'', or bp for biplot arrows or cn for centroids of factor constraints instead of an arrow.
Scaling for species and site scores. Either species (2) or site (1) scores are scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both are scaled symmetrically by square root of eigenvalues. Corresponding negative values can be used in cca to additionally multiply results with $\sqrt(1/(1-\lambda))$. This scaling is know as Hill scaling (although it has nothing to do with Hill's rescaling of decorana). With corresponding negative values in rda, species scores are divided by standard deviation of each species and multiplied with an equalizing constant. Unscaled raw scores stored in the result can be accessed with scaling = 0.

The type of scores can also be specified as one of "none", "sites", "species", or "symmetric", which correspond to the values 0, 1, 2, and 3 respectively. Arguments correlation and hill in scores.rda and scores.cca respectively can be used in combination with these character descriptions to get the corresponding negative value.

correlation, hill
logical; if scaling is a character description of the scaling type, correlation or hill are used to select the corresponding negative scaling type; either correlation-like scores or Hill's scaling for PCA/RDA and CA/CCA respectively. See argument scaling for details.
Type of plot: partial match to text for text labels, points for points, and none for setting frames only. If omitted, text is selected for smaller data sets, and points for larger.
xlim, ylim
the x and y limits (min,max) of the plot.
Optional text to be used instead of row names.
Factor to expand arrows in the graph. Arrows will be scaled automatically to fit the graph if this is missing.
Default length of arrow heads.
Items to be displayed. This can either be a logical vector which is TRUE for displayed items or a vector of indices of displayed items.
General scaling constant to rda scores. The default is to use a constant that gives biplot scores, that is, scores that approximate original data (see vignette on ‘Design Decisions’ with browseVignettes("vegan") for details and discussion). If const is a vector of two items, the first is used for species, and the second item for site scores.
Draw axis for biplot arrows.
Number of axes in summaries.
Number of digits in output.
n, head, tail
Number of rows printed from the head and tail of species and site scores. Default NA prints all.
Parameters passed to other functions.


The plot function returns invisibly a plotting structure which can be used by function identify.ordiplot to identify the points or other functions in the ordiplot family.


Same plot function will be used for cca and rda. This produces a quick, standard plot with current scaling.

The plot function sets colours (col), plotting characters (pch) and character sizes (cex) to certain standard values. For a fuller control of produced plot, it is best to call plot with type="none" first, and then add each plotting item separately using text.cca or points.cca functions. These use the default settings of standard text and points functions and accept all their parameters, allowing a full user control of produced plots.

Environmental variables receive a special treatment. With display="bp", arrows will be drawn. These are labelled with text and unlabelled with points. The arrows have basically unit scaling, but if sites were scaled (scaling "sites" or "symmetric"), the scores of requested axes are adjusted relative to the axis with highest eigenvalue. With scaling = "species" or scaling = "none", the arrows will be consistent with vectors fitted to linear combination scores (display = "lc" in function envfit), but with other scaling alternatives they will differ. The basic plot function uses a simple heuristics for adjusting the unit-length arrows to the current plot area, but the user can give the expansion factor in mul.arrow. With display="cn" the centroids of levels of factor variables are displayed (these are available only if there were factors and a formula interface was used in cca or rda). With this option continuous variables still are presented as arrows and ordered factors as arrows and centroids.

If you want to have still a better control of plots, it is better to produce them using primitive plot commands. Function scores helps in extracting the needed components with the selected scaling.

Function summary lists all scores and the output can be very long. You can suppress scores by setting axes = 0 or display = NA or display = NULL. You can display some first or last (or both) rows of scores by using head or tail or explicit print command for the summary. Palmer (1993) suggested using linear constraints (``LC scores'') in ordination diagrams, because these gave better results in simulations and site scores (``WA scores'') are a step from constrained to unconstrained analysis. However, McCune (1997) showed that noisy environmental variables (and all environmental measurements are noisy) destroy ``LC scores'' whereas ``WA scores'' were little affected. Therefore the plot function uses site scores (``WA scores'') as the default. This is consistent with the usage in statistics and other functions in R (lda, cancor).

See Also

cca, rda and capscale for getting something to plot, ordiplot for an alternative plotting routine and more support functions, and text, points and arrows for the basic routines.


Run this code
mod <- cca(dune ~ A1 + Moisture + Management, dune.env)
plot(mod, type="n")
text(mod, dis="cn")
points(mod, pch=21, col="red", bg="yellow", cex=1.2)
text(mod, "species", col="blue", cex=0.8)
## Limited output of 'summary'
head(summary(mod), tail=2)
## Scaling can be numeric or more user-friendly names
## e.g. Hill's scaling for (C)CA
scrs <- scores(mod, scaling = "sites", hill = TRUE)
## or correlation-based scores in PCA/RDA
scrs <- scores(rda(dune ~ A1 + Moisture + Management, dune.env),
               scaling = "sites", correlation = TRUE)

Run the code above in your browser using DataCamp Workspace