
emis_post
simplify emissions estimated as total per type category of
vehicle or by street. It reads EmissionsArray and Emissions classes. It can return a dataframe
with hourly emissions at each street, or a database with emissions by vehicular
category, hour, including size, fuel and other characteristics.
emis_post(arra, veh, size, fuel, pollutant, by = "veh", net, type_emi, k = 1)
Array of emissions 4d: streets x category of vehicles x hours x days or 3d: streets x category of vehicles x hours
Character, type of vehicle
Character, size or weight
Character, fuel
Pollutant
Type of output, "veh" for total vehicular category , "streets_narrow" or "streets". "streets" returns a dataframe with rows as number of streets and columns the hours as days*hours considered, e.g. 168 columns as the hours of a whole week and "streets repeats the row number of streets by hour and day of the week
SpatialLinesDataFrame or Spatial Feature of "LINESTRING". Only when by = 'streets_wide'
Character, type of emissions(exhaust, evaporative, etc)
Numeric, factor
if (FALSE) {
# Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
# Estimation for morning rush hour and local emission factors
speed <- data.frame(S8 = net$ps)
p1h <- matrix(1)
lef <- EmissionFactorsList(fe2015[fe2015$Pollutant=="CO", "PC_G"])
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed,
profile = p1h)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets_wide")
summary(E_CO_STREETS)
E_CO_STREETSsf <- emis_post(arra = E_CO, pollutant = "CO",
by = "streets", net = net)
summary(E_CO_STREETSsf)
plot(E_CO_STREETSsf, main = "CO emissions (g/h)")
# arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "CO", by = "veh")
# Estimation 168 hours
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]](1:24),"km"); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(dfcol = cod, v = "PC", cc = "<=1400",
f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
profile = pc_profile)
# arguments required: arra, pollutant ad by
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets")
summary(E_CO_STREETS)
# arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "CO", by = "veh")
head(E_CO_DF)
# recreating 24 profile
lpc <-list(pc1*0.2, pc1*0.1, pc1*0.1, pc1*0.2, pc1*0.5, pc1*0.8,
pc1, pc1*1.1, pc1,
pc1*0.8, pc1*0.5, pc1*0.5,
pc1*0.5, pc1*0.5, pc1*0.5, pc1*0.8,
pc1, pc1*1.1, pc1,
pc1*0.8, pc1*0.5, pc1*0.3, pc1*0.2, pc1*0.1)
E_COv2 <- emis(veh = lpc, lkm = net$lkm, ef = lef, speed = speed[, 1:24],
agemax = 41, hour = 24, day = 1)
plot(E_COv2)
E_CO_DFv2 <- emis_post(arra = E_COv2,
veh = "PC",
size = "<1400",
fuel = "G",
type_emi = "Exhaust",
pollutant = "CO", by = "veh")
head(E_CO_DFv2)
}
Run the code above in your browser using DataLab