Learn R Programming

verification (version 1.37)

multi.cont: Multiple Contingency Table Statistics

Description

Provides a variety of statistics for a data summarized in a contingency table. This will work for a 2 by 2 table, but is more useful for tables of greater dimensions.

Usage

multi.cont(DAT, baseline = NULL)

Arguments

DAT
A contingency table in the form of a matrix. It is assumed that columns represent observation, rows represent forecasts.
baseline
A vector indicating the baseline probabilities of each category. By default, it the baseline or naive forecasts is based on teh

Value

  • pcPercent correct - events along the diagonal.
  • biasBias
  • tsThreat score a.k.a. Critical success index (CSI)
  • hssHeidke Skill Score
  • pssPeirce Skill Score
  • gsGerrity Score
  • pc2Percent correct by category (vector)
  • hHit Rate by category (vector)
  • false.alarm.ratioFalse alarm ratio by category (vector)

References

Gerrity, J.P. Jr (1992). A note on Gandin and Murphy's equitable skill score. Mon. Weather Rev., 120, 2707-2712. Jolliffe, I.T. and D.B. Stephenson (2003). Forecast verification: a practitioner's guide in atmospheric science. John Wiley and Sons. See chapter 4 concerning categorical events, written by R. E. Livezey.

See Also

binary.table

Examples

Run this code
DAT<- matrix(c(7,4,4,14,9,8,14,16,24), nrow = 3) # from p. 80 - Jolliffe
multi.cont(DAT)

DAT<- matrix(c(3,8,7,8,13,14,4,18,25), ncol = 3) ## Jolliffe JJA
multi.cont(DAT)

DAT<- matrix(c(50,47,54,91,2364,205,71,170,3288), ncol = 3) # Wilks p. 245
multi.cont(DAT)

DAT<- matrix(c(28, 23, 72, 2680 ), ncol = 2) ## Finley
multi.cont(DAT)
## Finnish clouds
DAT<- matrix(c(65, 10, 21, 29,17,48, 18, 10, 128), nrow = 3, ncol = 3, byrow = TRUE)
multi.cont(DAT)  
 ### alternatively, the verify function and summary can be used.
 
 mod <- verify(DAT, frcst.type = "cat", obs.type = "cat")
 summary(mod)

Run the code above in your browser using DataLab