```
# Data from Mason and Graham article.
a<- c(0,0,0,1,1,1,0,1,1,0,0,0,0,1,1)
b<- c(.8, .8, 0, 1,1,.6, .4, .8, 0, 0, .2, 0, 0, 1,1)
c<- c(.928,.576, .008, .944, .832, .816, .136, .584, .032, .016, .28, .024, 0, .984, .952)
A<- data.frame(a,b,c)
names(A)<- c("event", "p1", "p2")
## for model with ties
roc.plot(A$event, A$p1)
## for model without ties
roc.plot(A$event, A$p2)
### show binormal curve fit.
roc.plot(A$event, A$p2, binormal = TRUE)
## Not run:
# # icing forecast
#
# data(prob.frcs.dat)
# A <- verify(prob.frcs.dat$obs, prob.frcs.dat$frcst/100)
# roc.plot(A, main = "AWG Forecast")
#
#
# # plotting a ``prob.bin'' class object.
# obs<- round(runif(100))
# pred<- runif(100)
#
# A<- verify(obs, pred, frcst.type = "prob", obs.type = "binary")
#
# roc.plot(A, main = "Test 1", binormal = TRUE, plot = "both")
#
# ## show confidence intervals. MAY BE SLOW
# roc.plot(A, threshold = seq(0.1,0.9, 0.1), main = "Test 1", CI = TRUE,
# alpha = 0.1)
#
# ### example from forecast verification website.
# data(pop)
# d <- pop.convert() ## internal function used to make binary observations for the pop figure.
# ### note the use of bins = FALSE !!
# mod24 <- verify(d$obs_norain, d$p24_norain, bins = FALSE)
#
# mod48 <- verify(d$obs_norain, d$p48_norain, bins = FALSE)
#
# roc.plot(mod24, plot.thres = NULL)
# lines.roc(mod48, col = 2, lwd = 2)
# leg.txt <- c("24 hour forecast", "48 hour forecast")
# legend( 0.6, 0.4, leg.txt, col = c(1,2), lwd = 2)
# ## End(Not run)
```

Run the code above in your browser using DataCamp Workspace