Learn R Programming

vermeulen

{vermeulen} provides the Biomarker data set by Vermeulen et al. (2009) in tidy format.

This data set is for a real-time quantitative PCR experiment that comprises:

  • The raw fluorescence data of 24,576 amplification curves.
  • 64 targets: 59 genes of interest and 5 reference genes.
  • 366 neuroblastoma cDNA samples and 18 dilution series samples.

Installation

Install {vermeulen} from CRAN:

# Install from CRAN
install.packages("vermeulen")

You can instead install the development version of {vermeulen} from GitHub:

# install.packages("remotes")
remotes::install_github("ramiromagno/vermeulen")

Usage

Because of CRAN size limits the data is not provided at installation time. The data can be retrieved from this GitHub repository after installation with the function get_biomarker_dataset().

library(vermeulen)
library(tibble)
library(dplyr)

# Takes a few seconds (downloading from GitHub...)
biomarker <- as_tibble(get_biomarker_dataset())
biomarker
#> # A tibble: 1,226,880 × 11
#>    plate well  dye   target target_t…¹ sample sampl…² copies dilut…³ cycle fluor
#>    <fct> <fct> <fct> <fct>  <fct>      <chr>  <fct>    <int>   <dbl> <int> <dbl>
#>  1 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     1  1.10
#>  2 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     2  1.45
#>  3 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     3  1.46
#>  4 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     4  1.47
#>  5 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     5  1.47
#>  6 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     6  1.45
#>  7 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     7  1.48
#>  8 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     8  1.46
#>  9 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA     9  1.47
#> 10 AHCY  A1    SYBR  AHCY   toi        1495   unk         NA      NA    10  1.46
#> # … with 1,226,870 more rows, and abbreviated variable names ¹​target_type,
#> #   ²​sample_type, ³​dilution
#> # ℹ Use `print(n = ...)` to see more rows

Types of samples:

count(
  distinct(biomarker, plate, well, sample_type, copies, dilution),
  sample_type,
  copies,
  dilution
)
#> # A tibble: 7 × 4
#>   sample_type copies dilution     n
#>   <fct>        <int>    <dbl> <int>
#> 1 ntc              0      Inf   192
#> 2 std             15    10000   192
#> 3 std            150     1000   192
#> 4 std           1500      100   192
#> 5 std          15000       10   192
#> 6 std         150000        1   192
#> 7 unk             NA       NA 23424

Code of Conduct

Please note that the {vermeulen} project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

References

  1. Vermeulen et al.. Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. The Lancet Oncology 10, 663–671 (2009). doi: 10.1016/S1470-2045(09)70154-8.

  2. Ruijter et al.. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods 59 32–46 (2013). doi: 10.1016/j.ymeth.2012.08.011.

Copy Link

Version

Install

install.packages('vermeulen')

Monthly Downloads

619

Version

0.1.1

License

CC BY 4.0

Issues

Pull Requests

Stars

Forks

Maintainer

Ramiro Magno

Last Published

November 10th, 2022

Functions in vermeulen (0.1.1)

vermeulen-package

vermeulen: 'Biomarker' Data Set by Vermeulen et al. (2009)
get_biomarker_dataset

Import the Biomarker data set