These are developer-facing functions, useful for supporting new model types.
Each model supported by vetiver_model() uses two handler functions
in vetiver_api():
The handler_startup function executes when the API starts. Use this
function for tasks like loading packages. A model can use the default
method here, which is NULL (to do nothing at startup).
The handler_predict function executes at each API call. Use this
function for calling predict() and any other tasks that must be executed
at each API call.
# S3 method for train
handler_startup(vetiver_model)# S3 method for train
handler_predict(vetiver_model, ...)
# S3 method for gam
handler_startup(vetiver_model)
# S3 method for gam
handler_predict(vetiver_model, ...)
# S3 method for glm
handler_predict(vetiver_model, ...)
handler_startup(vetiver_model)
# S3 method for default
handler_startup(vetiver_model)
handler_predict(vetiver_model, ...)
# S3 method for default
handler_predict(vetiver_model, ...)
# S3 method for keras.engine.training.Model
handler_startup(vetiver_model)
# S3 method for keras.engine.training.Model
handler_predict(vetiver_model, ...)
# S3 method for kproto
handler_predict(vetiver_model, ...)
# S3 method for lm
handler_predict(vetiver_model, ...)
# S3 method for luz_module_fitted
handler_startup(vetiver_model)
# S3 method for luz_module_fitted
handler_predict(vetiver_model, ...)
# S3 method for Learner
handler_startup(vetiver_model)
# S3 method for Learner
handler_predict(vetiver_model, ...)
# S3 method for int_conformal_split
handler_startup(vetiver_model)
# S3 method for int_conformal_split
handler_predict(vetiver_model, ...)
# S3 method for int_conformal_full
handler_startup(vetiver_model)
# S3 method for int_conformal_full
handler_predict(vetiver_model, ...)
# S3 method for int_conformal_quantile
handler_startup(vetiver_model)
# S3 method for int_conformal_quantile
handler_predict(vetiver_model, ...)
# S3 method for int_conformal_cv
handler_startup(vetiver_model)
# S3 method for int_conformal_cv
handler_predict(vetiver_model, ...)
# S3 method for ranger
handler_startup(vetiver_model)
# S3 method for ranger
handler_predict(vetiver_model, ...)
# S3 method for recipe
handler_startup(vetiver_model)
# S3 method for recipe
handler_predict(vetiver_model, ...)
# S3 method for model_stack
handler_startup(vetiver_model)
# S3 method for model_stack
handler_predict(vetiver_model, ...)
# S3 method for workflow
handler_startup(vetiver_model)
# S3 method for workflow
handler_predict(vetiver_model, ...)
# S3 method for xgb.Booster
handler_startup(vetiver_model)
# S3 method for xgb.Booster
handler_predict(vetiver_model, ...)
A handler_startup function should return invisibly, while a
handler_predict function should return a function with the signature
function(req). The request body (req$body) consists of the new data
at prediction time; this function should return predictions either as a
tibble or as a list coercable to a tibble via tibble::as_tibble().
A deployable vetiver_model() object
Other arguments passed to predict(), such as prediction type
These are two generics that use the class of vetiver_model$model
for dispatch.
cars_lm <- lm(mpg ~ ., data = mtcars)
v <- vetiver_model(cars_lm, "cars_linear")
handler_startup(v)
handler_predict(v)
Run the code above in your browser using DataLab