# Say you want to perform a disproportionality analysis between colitis and
# nivolumab among ICI cases
demo <-
demo_ |>
add_drug(
d_code = ex_$d_drecno,
drug_data = drug_
) |>
add_adr(
a_code = ex_$a_llt,
adr_data = adr_
)
demo |>
compute_dispro(
y = "a_colitis",
x = "nivolumab"
)
# You don't have to use the pipe syntax, if you're not familiar
compute_dispro(
.data = demo,
y = "a_colitis",
x = "nivolumab"
)
# Say you want to compute more than one univariate ror at a time.
many_drugs <-
names(ex_$d_drecno)
demo |>
compute_dispro(
y = "a_colitis",
x = many_drugs
)
# could do the same with adrs
many_adrs <-
names(ex_$a_llt)
demo |>
compute_dispro(
y = many_adrs,
x = many_drugs
)
# Export raw values if you want to built plots, or other tables.
demo |>
compute_dispro(
y = "a_colitis",
x = "nivolumab",
export_raw_values = TRUE
)
# Set a minimum number of observed cases to compute disproportionality
demo |>
compute_dispro(
y = "a_colitis",
x = "nivolumab",
min_n_obs = 5
)
Run the code above in your browser using DataLab