Compute estimates of and confidence intervals for nonparametric
difference in classification accuracy-based intrinsic variable importance.
This is a wrapper function for cv_vim
, with type = "accuracy"
.
vimp_accuracy(
Y = NULL,
X = NULL,
cross_fitted_f1 = NULL,
cross_fitted_f2 = NULL,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
na.rm = FALSE,
cross_fitting_folds = NULL,
sample_splitting_folds = NULL,
stratified = TRUE,
C = rep(1, length(Y)),
Z = NULL,
ipc_weights = rep(1, length(Y)),
scale = "identity",
ipc_est_type = "aipw",
scale_est = TRUE,
cross_fitted_se = TRUE,
...
)
An object of classes vim
and vim_accuracy
.
See Details for more information.
the outcome.
the covariates.
the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
the predicted values on validation data from a
flexible estimation technique regressing either (a) the fitted values in
cross_fitted_f1
, or (b) Y, on X withholding the columns in indx
;
a list of length V, where each object is a set of predictions on the
validation data. If sample-splitting is requested, then these must
be estimated specially; see Details.
the fitted values from a flexible estimation technique
regressing Y on X. If sample-splitting is requested, then these must be
estimated specially; see Details. If cross_fitted_se = TRUE
,
then this argument is not used.
the fitted values from a flexible estimation technique
regressing either (a) f1
or (b) Y on X withholding the columns in
indx
. If sample-splitting is requested, then these must be
estimated specially; see Details. If cross_fitted_se = TRUE
,
then this argument is not used.
the indices of the covariate(s) to calculate variable importance for; defaults to 1.
the number of folds for cross-fitting, defaults to 5. If
sample_splitting = TRUE
, then a special type of V
-fold cross-fitting
is done. See Details for a more detailed explanation.
if outcome Y and covariates X are passed to
cv_vim
, and run_regression
is TRUE
, then Super Learner
will be used; otherwise, variable importance will be computed using the
inputted fitted values.
a character vector of learners to pass to
SuperLearner
, if f1
and f2
are Y and X, respectively.
Defaults to SL.glmnet
, SL.xgboost
, and SL.mean
.
the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
the value of the \(\delta\)-null (i.e., testing if importance < \(\delta\)); defaults to 0.
should we remove NA's in the outcome and fitted values in
computation? (defaults to FALSE
)
the folds for cross-fitting. Only used if
run_regression = FALSE
.
the folds to use for sample-splitting; if entered,
these should result in balance within the cross-fitting folds. Only used
if run_regression = FALSE
and sample_splitting = TRUE
. A vector
of length \(2 * V\).
if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-fitting folds)
the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
either (i) NULL (the default, in which case the argument
C
above must be all ones), or (ii) a character vector specifying
the variable(s) among Y and X that are thought to play a role in the
coarsening mechanism.
weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated probability weights]).
should CIs be computed on original ("identity", default) or logit ("logit") scale?
the type of procedure used for coarsened-at-random
settings; options are "ipw" (for inverse probability weighting) or
"aipw" (for augmented inverse probability weighting).
Only used if C
is not all equal to 1.
should the point estimate be scaled to be greater than 0?
Defaults to TRUE
.
should we use cross-fitting to estimate the standard
errors (TRUE
, the default) or not (FALSE
)?
other arguments to the estimation tool, see "See also".
We define the population variable importance measure (VIM) for the group of features (or single feature) \(s\) with respect to the predictiveness measure \(V\) by $$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$ where \(f_0\) is the population predictiveness maximizing function, \(f_{0,s}\) is the population predictiveness maximizing function that is only allowed to access the features with index not in \(s\), and \(P_0\) is the true data-generating distribution.
Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of cross-fitting is to estimate \(f_0\) and \(f_{0,s}\) on independent data from estimating \(P_0\); this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate \(f_0\) and \(f_{0,s}\) on independent data; this allows valid inference under the null hypothesis of zero importance.
Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into \(K\) folds; then using each fold in turn as a hold-out set, constructing estimators \(f_{n,k}\) and \(f_{n,k,s}\) of \(f_0\) and \(f_{0,s}\), respectively on the training data and estimator \(P_{n,k}\) of \(P_0\) using the test data; and finally, computing $$\psi_{n,s} := K^{(-1)}\sum_{k=1}^K \{V(f_{n,k},P_{n,k}) - V(f_{n,k,s}, P_{n,k})\}.$$
With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into \(2K\) folds. These folds are further divided into 2 groups of folds. Then, for each fold \(k\) in the first group, estimator \(f_{n,k}\) of \(f_0\) is constructed using all data besides the kth fold in the group (i.e., \((2K - 1)/(2K)\) of the data) and estimator \(P_{n,k}\) of \(P_0\) is constructed using the held-out data (i.e., \(1/2K\) of the data); then, computing $$v_{n,k} = V(f_{n,k},P_{n,k}).$$ Similarly, for each fold \(k\) in the second group, estimator \(f_{n,k,s}\) of \(f_{0,s}\) is constructed using all data besides the kth fold in the group (i.e., \((2K - 1)/(2K)\) of the data) and estimator \(P_{n,k}\) of \(P_0\) is constructed using the held-out data (i.e., \(1/2K\) of the data); then, computing $$v_{n,k,s} = V(f_{n,k,s},P_{n,k}).$$ Finally, $$\psi_{n,s} := K^{(-1)}\sum_{k=1}^K \{v_{n,k} - v_{n,k,s}\}.$$
See the paper by Williamson, Gilbert, Simon, and Carone for more
details on the mathematics behind the cv_vim
function, and the
validity of the confidence intervals.
In the interest of transparency, we return most of the calculations
within the vim
object. This results in a list including:
the column(s) to calculate variable importance for
the library of learners passed to SuperLearner
the fitted values of the chosen method fit to the full data (a list, for train and test data)
the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
the estimated variable importance
the naive estimator of variable importance
the estimated efficient influence function
the estimated efficient influence function for the full regression
the estimated efficient influence function for the reduced regression
the standard error for the estimated variable importance
the \((1-\alpha) \times 100\)% confidence interval for the variable importance estimate
a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
a p-value based on the same test as test
the object returned by the estimation procedure for the full data regression (if applicable)
the object returned by the estimation procedure for the reduced data regression (if applicable)
the level, for confidence interval calculation
the folds used for hypothesis testing
the folds used for cross-fitting
the outcome
the weights
a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value
SuperLearner
for specific usage of the SuperLearner
function and package.
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))
# apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))
# generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
# estimate (with a small number of folds, for illustration only)
est <- vimp_accuracy(y, x, indx = 2,
alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 2))
Run the code above in your browser using DataLab