Learn R Programming

vimp (version 2.3.5)

Perform Inference on Algorithm-Agnostic Variable Importance

Description

Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).

Copy Link

Version

Install

install.packages('vimp')

Monthly Downloads

273

Version

2.3.5

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Brian D. Williamson

Last Published

July 23rd, 2025

Functions in vimp (2.3.5)

get_test_set

Return test-set only data
extract_sampled_split_predictions

Extract sampled-split predictions from a CV.SuperLearner object
estimate_type_predictiveness

Estimate Predictiveness Given a Type
get_full_type

Obtain the type of VIM to estimate using partial matching
format.predictiveness_measure

Format a predictiveness_measure object
make_folds

Create Folds for Cross-Fitting
format.vim

Format a vim object
measure_ppv

Estimate the positive predictive value (PPV)
measure_average_value

Estimate the average value under the optimal treatment rule
make_kfold

Turn folds from 2K-fold cross-fitting into individual K-fold folds
measure_npv

Estimate the positive predictive value (NPV)
measure_mse

Estimate mean squared error
run_sl

Run a Super Learner for the provided subset of features
process_arg_lst

Process argument list for Super Learner estimation of the EIF
print.vim

Print vim objects
measure_r_squared

Estimate R-squared
measure_specificity

Estimate the specificity
measure_sensitivity

Estimate the sensitivity
print.predictiveness_measure

Print predictiveness_measure objects
sample_subsets

Create necessary objects for SPVIMs
vimp

vimp: Perform Inference on Algorithm-Agnostic Intrinsic Variable Importance
vimp_anova

Nonparametric Intrinsic Variable Importance Estimates: ANOVA
spvim_ics

Influence function estimates for SPVIMs
vimp_accuracy

Nonparametric Intrinsic Variable Importance Estimates: Classification accuracy
bootstrap_se

Compute bootstrap-based standard error estimates for variable importance
estimate.predictiveness_measure

Obtain a Point Estimate and Efficient Influence Function Estimate for a Given Predictiveness Measure
est_predictiveness_cv

Estimate a nonparametric predictiveness functional using cross-fitting
estimate

Estimate a Predictiveness Measure
create_z

Create complete-case outcome, weights, and Z
check_inputs

Check inputs to a call to vim, cv_vim, or sp_vim
est_predictiveness

Estimate a nonparametric predictiveness functional
check_fitted_values

Check pre-computed fitted values for call to vim, cv_vim, or sp_vim
average_vim

Average multiple independent importance estimates
cv_vim

Nonparametric Intrinsic Variable Importance Estimates and Inference using Cross-fitting
estimate_eif_projection

Estimate projection of EIF on fully-observed variables
estimate_nuisances

Estimate nuisance functions for average value-based VIMs
get_cv_sl_folds

Get a numeric vector with cross-validation fold IDs from CV.SuperLearner
measure_accuracy

Estimate the classification accuracy
measure_anova

Estimate ANOVA decomposition-based variable importance.
measure_auc

Estimate area under the receiver operating characteristic curve (AUC)
measure_cross_entropy

Estimate the cross-entropy
predictiveness_measure

Construct a Predictiveness Measure
merge_vim

Merge multiple vim objects into one
measure_deviance

Estimate the deviance
scale_est

Return an estimator on a different scale
vimp_auc

Nonparametric Intrinsic Variable Importance Estimates: AUC
vim

Nonparametric Intrinsic Variable Importance Estimates and Inference
sp_vim

Shapley Population Variable Importance Measure (SPVIM) Estimates and Inference
vimp_ci

Confidence intervals for variable importance
spvim_se

Standard error estimate for SPVIM values