The $h$ function represents the conditional distribution function of a
bivariate copula and it should be defined for every copula used in
a pair-copula construction. It is defined as the partial derivative of the
distribution function of the copula w.r.t. the second argument
$h(x,v) = F(x|v) = \partial C(x,v) / \partial v$.
Usage
h(copula, x, v)
Arguments
copula
A bivariate copula object.
x
Numeric vector with values in $[0,1]$.
v
Numeric vector with values in $[0,1]$.
References
Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009)
Pair-copula constructions of multiple dependence.
Insurance: Mathematics and Economics44, 182--198.
Schirmacher, D. and Schirmacher, E. (2008)
Multivariate dependence modeling using pair-copulas.
Enterprise Risk Management Symposium, Chicago.