Learn R Programming

vines (version 1.1.5)

h-methods: Methods for the h-functions

Description

The $h$ function represents the conditional distribution function of a bivariate copula and it should be defined for every copula used in a pair-copula construction. It is defined as the partial derivative of the distribution function of the copula w.r.t. the second argument $h(x,v) = F(x|v) = \partial C(x,v) / \partial v$.

Usage

h(copula, x, v, eps)

Arguments

copula
A bivariate copula object.
x
Numeric vector with values in $[0,1]$.
v
Numeric vector with values in $[0,1]$.
eps
To avoid numerical problems for extreme values, the values of x, v and return values close to 0 and 1 are substituted by eps and 1 - eps, respectively. The default eps value for most of the copulas is .Machine$double.eps^0.5.

Methods

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182--198.

Schirmacher, D. and Schirmacher, E. (2008) Multivariate dependence modeling using pair-copulas. Enterprise Risk Management Symposium, Chicago.