Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


vip (version 0.1.2)

vi_model: Model-Based Variable Importance

Description

Compute model-based variable importance scores for the predictors in a model. (This function is meant for internal use only.)

Usage

vi_model(object, ...)

# S3 method for default vi_model(object, ...)

# S3 method for C5.0 vi_model(object, ...)

# S3 method for constparty vi_model(object, ...)

# S3 method for earth vi_model(object, ...)

# S3 method for gbm vi_model(object, ...)

# S3 method for H2OBinomialModel vi_model(object, ...)

# S3 method for H2OMultinomialModel vi_model(object, ...)

# S3 method for H2ORegressionModel vi_model(object, ...)

# S3 method for lm vi_model(object, ...)

# S3 method for ml_model_decision_tree_regression vi_model(object, ...)

# S3 method for ml_model_decision_tree_classification vi_model(object, ...)

# S3 method for ml_model_gbt_regression vi_model(object, ...)

# S3 method for ml_model_gbt_classification vi_model(object, ...)

# S3 method for ml_model_generalized_linear_regression vi_model(object, ...)

# S3 method for ml_model_linear_regression vi_model(object, ...)

# S3 method for ml_model_random_forest_regression vi_model(object, ...)

# S3 method for ml_model_random_forest_classification vi_model(object, ...)

# S3 method for randomForest vi_model(object, ...)

# S3 method for RandomForest vi_model(object, auc = FALSE, ...)

# S3 method for ranger vi_model(object, ...)

# S3 method for rpart vi_model(object, ...)

# S3 method for train vi_model(object, ...)

# S3 method for xgb.Booster vi_model(object, ...)

Arguments

object

A fitted model object (e.g., a "randomForest" object).

...

Additional optional arguments.

auc

Logical indicating whether or not to compute the AUC-based variable scores described in Janitza et al. (2012). Only available for cforest objects. See varimpAUC for details. Default is FALSE.

Value

A tidy data frame (i.e., a "tibble" object) with two columns: Variable and Importance. For "glm"-like object, an additional column, called Sign, is also included which includes the sign (i.e., POS/NEG) of the original coefficient.

Details

Coming soon!