
Last chance! 50% off unlimited learning
Sale ends in
Compute model-based variable importance scores for the predictors in a model. (This function is meant for internal use only.)
vi_model(object, ...)# S3 method for default
vi_model(object, ...)
# S3 method for C5.0
vi_model(object, ...)
# S3 method for constparty
vi_model(object, ...)
# S3 method for earth
vi_model(object, ...)
# S3 method for gbm
vi_model(object, ...)
# S3 method for H2OBinomialModel
vi_model(object, ...)
# S3 method for H2OMultinomialModel
vi_model(object, ...)
# S3 method for H2ORegressionModel
vi_model(object, ...)
# S3 method for lm
vi_model(object, ...)
# S3 method for ml_model_decision_tree_regression
vi_model(object, ...)
# S3 method for ml_model_decision_tree_classification
vi_model(object, ...)
# S3 method for ml_model_gbt_regression
vi_model(object, ...)
# S3 method for ml_model_gbt_classification
vi_model(object, ...)
# S3 method for ml_model_generalized_linear_regression
vi_model(object, ...)
# S3 method for ml_model_linear_regression
vi_model(object, ...)
# S3 method for ml_model_random_forest_regression
vi_model(object, ...)
# S3 method for ml_model_random_forest_classification
vi_model(object, ...)
# S3 method for randomForest
vi_model(object, ...)
# S3 method for RandomForest
vi_model(object, auc = FALSE, ...)
# S3 method for ranger
vi_model(object, ...)
# S3 method for rpart
vi_model(object, ...)
# S3 method for train
vi_model(object, ...)
# S3 method for xgb.Booster
vi_model(object, ...)
A fitted model object (e.g., a "randomForest"
object).
Additional optional arguments.
A tidy data frame (i.e., a "tibble"
object) with two columns:
Variable
and Importance
. For "glm"
-like object, an
additional column, called Sign
, is also included which includes the
sign (i.e., POS/NEG) of the original coefficient.
Coming soon!