gen_friedman: Friedman benchmark data
Description
Simulate data from the Friedman 1 benchmark problem. See
mlbench.friedman1
for details and references.
Usage
gen_friedman(
n_samples = 100,
n_features = 10,
n_bins = NULL,
sigma = 0.1,
seed = NULL
)
Arguments
n_samples
Integer specifying the number of samples (i.e., rows) to
generate. Default is 100.
n_features
Integer specifying the number of features to generate.
Default is 10.
n_bins
Integer specifying the number of (roughly) equal sized bins to
split the response into. Default is NULL
for no binning. Setting to
a positive integer > 1 effectively turns this into a classification problem
where n_bins
gives the number of classes.
sigma
Numeric specifying the standard deviation of the noise.
seed
Integer specifying the random seed. If NULL
(the default)
the results will be different each time the function is run.
Examples
Run this code# NOT RUN {
gen_friedman()
# }
Run the code above in your browser using DataLab