Common model/evaluation metrics for machine learning.
metric_mse(actual, predicted, na.rm = FALSE)metric_rmse(actual, predicted, na.rm = FALSE)
metric_sse(actual, predicted, na.rm = FALSE)
metric_mae(actual, predicted, na.rm = FALSE)
metric_rsquared(actual, predicted, na.rm = FALSE)
metric_accuracy(actual, predicted, na.rm = FALSE)
metric_error(actual, predicted, na.rm = FALSE)
metric_auc(actual, predicted)
metric_logLoss(actual, predicted)
metric_mauc(actual, predicted)
Vector of actual target values.
Vector of predicted target values.
Logical indicating whether or not NA
values should be
stripped before the computation proceeds.
# NOT RUN {
x <- rnorm(10)
y <- rnorm(10)
metric_mse(x, y)
metric_rsquared(x, y)
# }
Run the code above in your browser using DataLab