Free Access Week - Data Engineering + BI
Data Engineering and BI courses are free this week!
Free Access Week - Jun 2-8

vip (version 0.2.2)

metric_mse: Model metrics

Description

Common model/evaluation metrics for machine learning.

Usage

metric_mse(actual, predicted, na.rm = FALSE)

metric_rmse(actual, predicted, na.rm = FALSE)

metric_sse(actual, predicted, na.rm = FALSE)

metric_mae(actual, predicted, na.rm = FALSE)

metric_rsquared(actual, predicted, na.rm = FALSE)

metric_accuracy(actual, predicted, na.rm = FALSE)

metric_error(actual, predicted, na.rm = FALSE)

metric_auc(actual, predicted)

metric_logLoss(actual, predicted)

metric_mauc(actual, predicted)

Arguments

actual

Vector of actual target values.

predicted

Vector of predicted target values.

na.rm

Logical indicating whether or not NA values should be stripped before the computation proceeds.

Examples

Run this code
# NOT RUN {
x <- rnorm(10)
y <- rnorm(10)
metric_mse(x, y)
metric_rsquared(x, y)
# }

Run the code above in your browser using DataLab