gen_friedman: Friedman benchmark data
Description
Simulate data from the Friedman 1 benchmark problem. See
mlbench.friedman1
for details and references.
Usage
gen_friedman(
n_samples = 100,
n_features = 10,
n_bins = NULL,
sigma = 0.1,
seed = NULL
)
Arguments
- n_samples
Integer specifying the number of samples (i.e., rows) to
generate. Default is 100.
- n_features
Integer specifying the number of features to generate.
Default is 10.
- n_bins
Integer specifying the number of (roughly) equal sized bins to
split the response into. Default is NULL
for no binning. Setting to
a positive integer > 1 effectively turns this into a classification problem
where n_bins
gives the number of classes.
- sigma
Numeric specifying the standard deviation of the noise.
- seed
Integer specifying the random seed. If NULL
(the default)
the results will be different each time the function is run.