Learn R Programming

viralx

A dedicated viral-explainer model tool designed to empower researchers in the field of HIV research, particularly in viral load and CD4 (Cluster of Differentiation 4) lymphocytes regression modeling. Drawing inspiration from the ‘tidymodels’ framework for rigorous model building of Max Kuhn and Hadley Wickham (2020) https://www.tidymodels.org, and the ‘DALEXtra’ tool for explainability by Przemyslaw Biecek (2020) doi:10.48550/arXiv.2009.13248. It aims to facilitate interpretable and reproducible research in biostatistics and computational biology for the benefit of understanding HIV dynamics.

Copy Link

Version

Install

install.packages('viralx')

Monthly Downloads

119

Version

1.3.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Juan Pablo Acuña González

Last Published

July 4th, 2025

Functions in viralx (1.3.1)

viralx_nn_shap

Explain Neural Network Model Using SHAP Values
viralx_mars_shap

Explain Multivariate Adaptive Regression Splines Using SHAP Values
viralx_mars_vis

Visualize SHAP Values for Multivariate Adaptive Regression Splines Model
viralx_nn_glob

Global Explainers for Neural Network Models
viralx_knn_glob

Global Explainers for K-Nearest Neighbor Models
viralx_knn_shap

Explain K Nearest Neighbor Model using SHAP values
viralx_knn

Explain K-Nearest Neighbors Model
viralx-package

viralx: Explainers for Regression Models in HIV Research
glob_knn_vis

Global Visualization of SHAP Values for K-Nearest Neighbor Model
glob_cr_vis

Global Visualization of SHAP Values for Cubist Rules Model
viralx_knn_vis

Visualize SHAP Values for K-Nearest Neighbor Model
glob_nn_vis

Global Visualization of SHAP Values for Neural Network Model
viralx_mars

Explain Multivariate Adaptive Regression Splines Model
viralx_nn_vis

Visualize SHAP Values for Neural Network Model
viralx_nn

Explain Neural Network Regression Model
train2

Training Data for Explainability of Models