# NOT RUN {
library("vlad")
library("spcadjust")
## Datasets
data("cardiacsurgery")
s5000 <- dplyr::sample_n(cardiacsurgery, size=5000, replace=TRUE)
df1 <- subset(cardiacsurgery, select=c(Parsonnet, status))
df2 <- subset(s5000, select=c(Parsonnet, status))
## estimate coefficients from logit model
coeff1 <- round(coef(glm(status~Parsonnet, data=df1, family="binomial")), 3)
coeff2 <- round(coef(glm(status~Parsonnet, data=df2, family="binomial")), 3)
## Serial simulation
RNGkind("L'Ecuyer-CMRG")
m <- 10^3
kopt <- optimal_k(QA=2, parsonnetscores=df1$Parsonnet, coeff=coeff1)
#eocusum_arloc_h_sim(L0=370, df=df1, k=kopt, m=m, side="low", coeff=coeff1, coeff2=coeff2, nc=nc)
RLS <- do.call(c, lapply(1:m, eocusum_arloc_sim, h=2.626, k=kopt, df=df1, side="low", coeff=coeff1,
coeff2=coeff2))
data.frame(cbind(ARL=mean(RLS), ARLSE=sd(RLS)/sqrt(m)))
## Parallel simulation (FORK)
RNGkind("L'Ecuyer-CMRG")
m <- 10^3
kopt <- optimal_k(QA=2, parsonnetscores=df1$Parsonnet, coeff=coeff1)
RLS <- simplify2array(parallel::mclapply(1:m, eocusum_arloc_sim, h=2.626, k=kopt, df=df1,
side="low", coeff=coeff1, coeff2=coeff2,
mc.cores=parallel::detectCores()))
data.frame(cbind(ARL=mean(RLS), ARLSE=sd(RLS)/sqrt(m)))
## Parallel simulation (PSOCK)
RNGkind("L'Ecuyer-CMRG")
no_cores <- parallel::detectCores()
cl <- parallel::makeCluster(no_cores)
side <- "low"
h_vec <- 2.626
QS_vec <- 1
m <- 10^3
k <- optimal_k(QA=2, parsonnetscores=df1$Parsonnet, coeff=coeff1)
parallel::clusterExport(cl, c("h_vec", "eocusum_arloc_sim", "df1", "coeff1", "coeff2",
"QS_vec", "side", "k"))
time <- system.time( {
RLS <- array(NA, dim=c( length(QS_vec), length(h_vec), m))
for (h in h_vec) {
for (QS in QS_vec) {
cat(h, " ", QS, "\n")
RLS[which(QS_vec==QS), which(h==h_vec), ] <- parallel::parSapply(cl, 1:m, eocusum_arloc_sim,
side=side, QS=QS, h=h, k=k,
df=df1, coeff=coeff1,
coeff2=coeff2,
USE.NAMES=FALSE)
}
}
} )
ARL <- apply(RLS, c(1, 2), mean)
ARLSE <- sqrt(apply(RLS, c(1, 2), var)/m)
print(list(ARL, ARLSE, time))
parallel::stopCluster(cl)
# }
Run the code above in your browser using DataLab