
Last chance! 50% off unlimited learning
Sale ends in
Heatmap for correlations between multiple items
plot_metrics_items_cor_items(
data,
cols,
cross,
method = "pearson",
numbers = FALSE,
title = TRUE,
labels = TRUE,
clean = TRUE,
...
)
A ggplot object.
A tibble containing item measures.
Tidyselect item variables (e.g. starts_with...).
Tidyselect item variables to correlate (e.g. starts_with...).
The method of correlation calculation, pearson = Pearson's R, spearman = Spearman's rho.
Controls whether to display correlation coefficients on the plot.
If TRUE (default) shows a plot title derived from the column labels. Disable the title with FALSE or provide a custom title as character value.
If TRUE (default) extracts labels from the attributes, see codebook.
Prepare data by data_clean.
Placeholder to allow calling the method with unused parameters from plot_metrics.
library(volker)
data <- volker::chatgpt
plot_metrics_items_cor_items(data, starts_with("cg_adoption_adv"), starts_with("use_"))
Run the code above in your browser using DataLab