powered by
Correlation of categorical items with categorical items
plot_counts_items_grouped_items( data, cols, cross, method = "cramer", category = NULL, title = TRUE, labels = TRUE, clean = TRUE, ... )
A ggplot object.
A tibble containing item measures.
Tidyselect item variables (e.g. starts_with...).
The method of correlation calculation:
cramer for Cramer's V,
cramer
npmi for Normalized Pointwise Mutual Information.
npmi
If TRUE (default) shows a plot title derived from the column labels. Disable the title with FALSE or provide a custom title as character value.
If TRUE (default) extracts labels from the attributes, see codebook.
Prepare data by data_clean.
Placeholder to allow calling the method with unused parameters from plot_counts.
library(volker) data <- volker::chatgpt plot_counts_items_grouped_items( data, starts_with("cg_adoption_advantage"), starts_with("cg_adoption_fearofuse"), method ="cramer" )
Run the code above in your browser using DataLab