designTreatmentsN(dframe, varlist, outcomename, ..., weights = c(),
minFraction = 0.02, smFactor = 0, rareCount = 0, rareSig = 1,
collarProb = 0, verbose = TRUE, parallelCluster = NULL)
- vars : (character array without names) names of variables (in same order as names on the other diagnostic vectors) - varMoves : logical TRUE if the variable varied during hold out scoring, only variables that move will be in the treated frame - sig : an estimate significance of effect
See the vtreat vignette for a bit more detail and a worked example.
prepare
designTreatmentsC
dTrainN <- data.frame(x=c('a','a','a','a','b','b','b'),
z=c(1,2,3,4,5,6,7),y=c(0,0,0,1,0,1,1))
dTestN <- data.frame(x=c('a','b','c',NA),
z=c(10,20,30,NA))
treatmentsN = designTreatmentsN(dTrainN,colnames(dTrainN),'y')
dTrainNTreated <- prepare(treatmentsN,dTrainN,pruneSig=0.99)
dTestNTreated <- prepare(treatmentsN,dTestN,pruneSig=0.99)
Run the code above in your browser using DataLab