Learn R Programming

⚠️There's a newer version (0.3.6) of this package.Take me there.

wakefield

<img src="inst/wakefield_logo/r_wakefield.png" width="60%", alt="">

Table of Contents

Installation

To download the development version of wakefield:

Download the zip ball or tar ball, decompress and run R CMD INSTALL on it, or use the pacman package to install the development version:

if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/wakefield")
pacman::p_load(dplyr, tidyr, ggplot2)

Help

Contact

You are welcome to:

Demonstration

Getting Started

The r_data_frame function (random data frame) takes n (the number of rows) and any number of variables (columns). These columns are typically produced from a wakefield variable function. Each of these variable functions has a pre-set behavior that produces a named vector of n length, allowing the user to lazily pass unnamed functions (optionally, without call parenthesis). The column name is hidden as a varname attribute. For example here we see the race variable function:

race(n=10)

##  [1] White White White White White White Black White White Black
## Levels: White Hispanic Black Asian Bi-Racial Native Other Hawaiian

attributes(race(n=10))

## $levels
## [1] "White"     "Hispanic"  "Black"     "Asian"     "Bi-Racial" "Native"   
## [7] "Other"     "Hawaiian" 
## 
## $class
## [1] "variable" "factor"  
## 
## $varname
## [1] "Race"

When this variable is used inside of r_data_frame the varname is used as a column name. Additionally, the n argument is not set within variable functions but is set once in r_data_frame:

r_data_frame(
    n = 500,
    race
)

## Source: local data frame [500 x 1]
## 
##        Race
##      (fctr)
## 1     White
## 2     Black
## 3     White
## 4     White
## 5     White
## 6     White
## 7  Hispanic
## 8     White
## 9     Black
## 10    White
## ..      ...

The power of r_data_frame is apparent when we use many modular variable functions:

r_data_frame(
    n = 500,
    id,
    race,
    age,
    sex,
    hour,
    iq,
    height,
    died
)

## Source: local data frame [500 x 8]
## 
##       ID     Race   Age    Sex     Hour    IQ Height  Died
##    (chr)   (fctr) (int) (fctr)   (tims) (dbl)  (dbl) (lgl)
## 1    001    White    35   Male 00:00:00   100     65  TRUE
## 2    002    White    35   Male 00:00:00   114     79  TRUE
## 3    003    White    20   Male 00:00:00   116     63  TRUE
## 4    004    White    20 Female 00:00:00    91     77  TRUE
## 5    005    White    23 Female 00:00:00   101     64 FALSE
## 6    006    Asian    27 Female 00:00:00   119     72  TRUE
## 7    007 Hispanic    26 Female 00:00:00    89     66 FALSE
## 8    008    White    24   Male 00:00:00    84     63  TRUE
## 9    009    White    26 Female 00:00:00   108     67  TRUE
## 10   010 Hispanic    30 Female 00:30:00   100     72 FALSE
## ..   ...      ...   ...    ...      ...   ...    ...   ...

There are 49 wakefield based variable functions to chose from, spanning R's various data types (see ?variables for details).

r_data_frame(
    n = 500,
    id,
    Scoring = rnorm,
    Smoker = valid,
    race,
    age,
    sex,
    hour,
    iq,
    height,
    died
)

## Source: local data frame [500 x 10]
## 
##       ID     Scoring Smoker   Race   Age    Sex     Hour    IQ Height
##    (chr)       (dbl)  (lgl) (fctr) (int) (fctr)   (tims) (dbl)  (dbl)
## 1    001  0.35729131   TRUE  White    28   Male 00:00:00    80     72
## 2    002  0.03406854   TRUE  White    20   Male 00:00:00   101     75
## 3    003 -0.21320876   TRUE  White    30   Male 00:00:00    81     64
## 4    004 -0.14670245   TRUE  White    32 Female 00:00:00    87     69
## 5    005 -0.30578953  FALSE  White    33   Male 00:00:00    92     73
## 6    006 -0.31817961   TRUE  White    29   Male 00:00:00    90     74
## 7    007  1.14035908  FALSE  Black    31   Male 00:00:00   103     61
## 8    008 -1.72324249  FALSE  Asian    22   Male 00:00:00    88     63
## 9    009  0.10694555   TRUE  White    28   Male 00:00:00   111     66
## 10   010 -0.24042020   TRUE  White    33   Male 00:00:00    94     70
## ..   ...         ...    ...    ...   ...    ...      ...   ...    ...
## Variables not shown: Died (lgl)

r_data_frame(
    n = 500,
    id,
    age, age, age,
    grade, grade, grade
)

## Source: local data frame [500 x 7]
## 
##       ID Age_1 Age_2 Age_3 Grade_1 Grade_2 Grade_3
##    (chr) (int) (int) (int)   (dbl)   (dbl)   (dbl)
## 1    001    32    21    25    86.0    90.8    90.6
## 2    002    29    27    35    89.7    89.0    86.1
## 3    003    21    35    34    85.0    83.6    85.7
## 4    004    28    20    32    91.1    79.3    81.0
## 5    005    30    31    31    89.3    92.8    96.4
## 6    006    23    33    22    91.1    79.8    89.7
## 7    007    30    31    32    87.1    91.2    90.3
## 8    008    22    32    31    85.9    87.9    89.3
## 9    009    31    23    23    85.9    91.1    90.0
## 10   010    22    24    32    81.0    88.7    84.8
## ..   ...   ...   ...   ...     ...     ...     ...

While passing variable functions to r_data_frame without call parenthesis is handy, the user may wish to set arguments. This can be done through call parenthesis as we do with data.frame or dplyr::data_frame:

r_data_frame(
    n = 500,
    id,
    Scoring = rnorm,
    Smoker = valid,
    `Reading(mins)` = rpois(lambda=20),  
    race,
    age(x = 8:14),
    sex,
    hour,
    iq,
    height(mean=50, sd = 10),
    died
)

## Source: local data frame [500 x 11]
## 
##       ID     Scoring Smoker Reading(mins)   Race   Age    Sex     Hour
##    (chr)       (dbl)  (lgl)         (int) (fctr) (int) (fctr)   (tims)
## 1    001 -1.37609383  FALSE            18  White    11 Female 00:00:00
## 2    002  2.03200096  FALSE            14  White    12   Male 00:00:00
## 3    003 -0.13097071  FALSE            21  Black    13   Male 00:00:00
## 4    004  0.82349800   TRUE            10  White     9   Male 00:00:00
## 5    005  0.05255655  FALSE            10  Black     8   Male 00:00:00
## 6    006 -0.10398656   TRUE            12  White    10 Female 00:00:00
## 7    007  0.56926154  FALSE            23  White    14   Male 00:00:00
## 8    008  0.12042217  FALSE            23  Black     8 Female 00:00:00
## 9    009  0.20717877   TRUE            11  White    14 Female 00:30:00
## 10   010  2.21729855  FALSE            26  White    10 Female 00:30:00
## ..   ...         ...    ...           ...    ...   ...    ...      ...
## Variables not shown: IQ (dbl), Height (dbl), Died (lgl)

Random Missing Observations

Often data contains missing values. wakefield allows the user to add a proportion of missing values per column/vector via the r_na (random NA). This works nicely within a dplyr/magrittr %>% then pipeline:

r_data_frame(
    n = 30,
    id,
    race,
    age,
    sex,
    hour,
    iq,
    height,
    died,
    Scoring = rnorm,
    Smoker = valid
) %>%
    r_na(prob=.4)

## Source: local data frame [30 x 10]
## 
##       ID     Race   Age    Sex     Hour    IQ Height  Died    Scoring
##    (chr)   (fctr) (int) (fctr)   (tims) (dbl)  (dbl) (lgl)      (dbl)
## 1     01       NA    NA     NA     <NA>    92     NA FALSE  0.1645463
## 2     02       NA    NA     NA 01:30:00    NA     67  TRUE -0.9523500
## 3     03    White    29 Female     <NA>   100     NA FALSE -1.1061811
## 4     04    White    NA     NA     <NA>    NA     67 FALSE -0.4119794
## 5     05       NA    31   Male     <NA>    NA     64    NA  1.6834534
## 6     06 Hispanic    30 Female 03:30:00    NA     68    NA -0.3526578
## 7     07    Black    25     NA     <NA>    84     71 FALSE  0.3983277
## 8     08       NA    NA     NA 04:00:00    NA     NA  TRUE         NA
## 9     09       NA    33 Female 04:30:00    95     73 FALSE         NA
## 10    10    White    30     NA     <NA>    NA     68    NA         NA
## ..   ...      ...   ...    ...      ...   ...    ...   ...        ...
##    Smoker
##     (lgl)
## 1      NA
## 2      NA
## 3      NA
## 4    TRUE
## 5      NA
## 6    TRUE
## 7    TRUE
## 8    TRUE
## 9    TRUE
## 10   TRUE
## ..    ...

Repeated Measures & Time Series

The r_series function allows the user to pass a single wakefield function and dictate how many columns (j) to produce.

set.seed(10)

r_series(likert, j = 3, n=10)

## Source: local data frame [10 x 3]
## 
##          Likert_1          Likert_2          Likert_3
##            (fctr)            (fctr)            (fctr)
## 1         Neutral          Disagree Strongly Disagree
## 2           Agree           Neutral          Disagree
## 3         Neutral    Strongly Agree          Disagree
## 4        Disagree           Neutral             Agree
## 5  Strongly Agree             Agree           Neutral
## 6           Agree           Neutral          Disagree
## 7           Agree    Strongly Agree Strongly Disagree
## 8           Agree             Agree             Agree
## 9        Disagree             Agree          Disagree
## 10        Neutral Strongly Disagree             Agree

Often the user wants a numeric score for Likert type columns and similar variables. For series with multiple factors the as_integer converts all columns to integer values. Additionally, we may want to specify column name prefixes. This can be accomplished via the variable function's name argument. Both of these features are demonstrated here.

set.seed(10)

as_integer(r_series(likert, j = 5, n=10, name = "Item"))

## Source: local data frame [10 x 5]
## 
##    Item_1 Item_2 Item_3 Item_4 Item_5
##     (int)  (int)  (int)  (int)  (int)
## 1       3      2      1      3      4
## 2       4      3      2      5      4
## 3       3      5      2      5      5
## 4       2      3      4      1      2
## 5       5      4      3      3      4
## 6       4      3      2      2      5
## 7       4      5      1      1      5
## 8       4      4      4      1      3
## 9       2      4      2      2      5
## 10      3      1      4      3      1

r_series can be used within a r_data_frame as well.

set.seed(10)

r_data_frame(n=100,
    id,
    age,
    sex,
    r_series(likert, 3, name = "Question")
)

## Source: local data frame [100 x 6]
## 
##       ID   Age    Sex        Question_1        Question_2
##    (chr) (int) (fctr)            (fctr)            (fctr)
## 1    001    28   Male             Agree             Agree
## 2    002    24   Male           Neutral    Strongly Agree
## 3    003    26   Male          Disagree           Neutral
## 4    004    31   Male Strongly Disagree           Neutral
## 5    005    21 Female    Strongly Agree Strongly Disagree
## 6    006    23 Female          Disagree          Disagree
## 7    007    24 Female          Disagree    Strongly Agree
## 8    008    24   Male Strongly Disagree             Agree
## 9    009    29 Female             Agree    Strongly Agree
## 10   010    26   Male Strongly Disagree Strongly Disagree
## ..   ...   ...    ...               ...               ...
## Variables not shown: Question_3 (fctr)

set.seed(10)

r_data_frame(n=100,
    id,
    age,
    sex,
    r_series(likert, 5, name = "Item", integer = TRUE)
)

## Source: local data frame [100 x 8]
## 
##       ID   Age    Sex Item_1 Item_2 Item_3 Item_4 Item_5
##    (chr) (int) (fctr)  (int)  (int)  (int)  (int)  (int)
## 1    001    28   Male      4      4      1      1      1
## 2    002    24   Male      3      5      2      1      2
## 3    003    26   Male      2      3      2      1      2
## 4    004    31   Male      1      3      2      4      3
## 5    005    21 Female      5      1      1      5      4
## 6    006    23 Female      2      2      4      3      4
## 7    007    24 Female      2      5      1      5      2
## 8    008    24   Male      1      4      4      5      5
## 9    009    29 Female      4      5      5      4      3
## 10   010    26   Male      1      1      4      1      2
## ..   ...   ...    ...    ...    ...    ...    ...    ...

Related Series

The user can also create related series via the relate argument in r_series. It allows the user to specify the relationship between columns. relate may be a named list of or a short hand string of the form of "fM_sd" where:

  • f is one of (+, -, *, /)
  • M is a mean value
  • sd is a standard deviation of the mean value

For example you may use relate = "*4_1". If relate = NULL no relationship is generated between columns. I will use the short hand string form here.

Some Examples With Variation

r_series(grade, j = 5, n = 100, relate = "+1_6")

## Source: local data frame [100 x 5]
## 
##    Grade_1 Grade_2 Grade_3 Grade_4 Grade_5
##      (dbl)   (dbl)   (dbl)   (dbl)   (dbl)
## 1     84.5    92.5    91.6    87.4    76.7
## 2     93.1    85.0    81.8    87.8    91.3
## 3     81.6    67.5    52.6    48.8    56.8
## 4     92.5    89.3    95.3   102.2    94.5
## 5     96.6    95.9    98.7   115.9   114.7
## 6     89.7    88.1    88.8    89.0    86.4
## 7     92.8    91.7    98.3    98.7   101.6
## 8     92.1    92.9    92.6    85.5    93.1
## 9     90.6    96.9   103.9   107.6   106.2
## 10    96.0    94.8    84.3    91.1   106.6
## ..     ...     ...     ...     ...     ...

r_series(age, 5, 100, relate = "+5_0")

## Source: local data frame [100 x 5]
## 
##    Age_1 Age_2 Age_3 Age_4 Age_5
##    (dbl) (dbl) (dbl) (dbl) (dbl)
## 1     24    29    34    39    44
## 2     24    29    34    39    44
## 3     27    32    37    42    47
## 4     22    27    32    37    42
## 5     32    37    42    47    52
## 6     27    32    37    42    47
## 7     21    26    31    36    41
## 8     29    34    39    44    49
## 9     35    40    45    50    55
## 10    33    38    43    48    53
## ..   ...   ...   ...   ...   ...

r_series(likert, 5,  100, name ="Item", relate = "-.5_.1")

## Source: local data frame [100 x 5]
## 
##    Item_1 Item_2 Item_3 Item_4 Item_5
##     (dbl)  (dbl)  (dbl)  (dbl)  (dbl)
## 1       2      1      0     -1     -1
## 2       3      2      1      1      0
## 3       1      1      1      0      0
## 4       4      3      3      2      1
## 5       2      1      1      0      0
## 6       2      1      1      1      0
## 7       1      0      0     -1     -2
## 8       2      2      1      1      0
## 9       2      2      1      0      0
## 10      3      3      3      3      3
## ..    ...    ...    ...    ...    ...

r_series(grade, j = 5, n = 100, relate = "*1.05_.1")

## Source: local data frame [100 x 5]
## 
##    Grade_1 Grade_2 Grade_3  Grade_4  Grade_5
##      (dbl)   (dbl)   (dbl)    (dbl)    (dbl)
## 1     85.7   94.27 113.124 113.1240 113.1240
## 2     86.4   77.76  77.760  85.5360  85.5360
## 3     90.6   99.66  89.694  98.6634 108.5297
## 4     89.1   89.10  89.100  71.2800  71.2800
## 5     87.0   95.70 114.840 103.3560 113.6916
## 6     93.9  103.29 123.948 136.3428 136.3428
## 7     80.1   72.09  64.881  84.3453  84.3453
## 8     91.7  110.04 132.048 132.0480 145.2528
## 9     87.4   96.14  96.140 105.7540 116.3294
## 10    92.9   92.90  83.610  91.9710 101.1681
## ..     ...     ...     ...      ...      ...

Adjust Correlations

Use the sd command to adjust correlations.

round(cor(r_series(grade, 8, 10, relate = "+1_2")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1    1.00    0.85    0.64    0.39    0.28    0.25    0.28    0.15
## Grade_2    0.85    1.00    0.86    0.68    0.61    0.56    0.56    0.47
## Grade_3    0.64    0.86    1.00    0.77    0.70    0.80    0.86    0.78
## Grade_4    0.39    0.68    0.77    1.00    0.94    0.80    0.65    0.74
## Grade_5    0.28    0.61    0.70    0.94    1.00    0.85    0.69    0.73
## Grade_6    0.25    0.56    0.80    0.80    0.85    1.00    0.92    0.89
## Grade_7    0.28    0.56    0.86    0.65    0.69    0.92    1.00    0.91
## Grade_8    0.15    0.47    0.78    0.74    0.73    0.89    0.91    1.00

round(cor(r_series(grade, 8, 10, relate = "+1_0")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1       1       1       1       1       1       1       1       1
## Grade_2       1       1       1       1       1       1       1       1
## Grade_3       1       1       1       1       1       1       1       1
## Grade_4       1       1       1       1       1       1       1       1
## Grade_5       1       1       1       1       1       1       1       1
## Grade_6       1       1       1       1       1       1       1       1
## Grade_7       1       1       1       1       1       1       1       1
## Grade_8       1       1       1       1       1       1       1       1

round(cor(r_series(grade, 8, 10, relate = "+1_20")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1    1.00    0.26    0.27    0.40    0.21   -0.21   -0.36   -0.41
## Grade_2    0.26    1.00    0.77    0.60    0.64    0.50    0.53    0.46
## Grade_3    0.27    0.77    1.00    0.78    0.76    0.66    0.62    0.66
## Grade_4    0.40    0.60    0.78    1.00    0.95    0.76    0.59    0.55
## Grade_5    0.21    0.64    0.76    0.95    1.00    0.82    0.65    0.61
## Grade_6   -0.21    0.50    0.66    0.76    0.82    1.00    0.90    0.82
## Grade_7   -0.36    0.53    0.62    0.59    0.65    0.90    1.00    0.94
## Grade_8   -0.41    0.46    0.66    0.55    0.61    0.82    0.94    1.00

round(cor(r_series(grade, 8, 10, relate = "+15_20")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1    1.00   -0.10   -0.50   -0.39   -0.25   -0.52   -0.26   -0.31
## Grade_2   -0.10    1.00    0.74    0.50    0.13    0.03    0.36    0.46
## Grade_3   -0.50    0.74    1.00    0.81    0.48    0.41    0.71    0.78
## Grade_4   -0.39    0.50    0.81    1.00    0.75    0.66    0.58    0.75
## Grade_5   -0.25    0.13    0.48    0.75    1.00    0.91    0.70    0.74
## Grade_6   -0.52    0.03    0.41    0.66    0.91    1.00    0.58    0.57
## Grade_7   -0.26    0.36    0.71    0.58    0.70    0.58    1.00    0.78
## Grade_8   -0.31    0.46    0.78    0.75    0.74    0.57    0.78    1.00

Visualize the Relationship

dat <- r_data_frame(12,
    name,
    r_series(grade, 100, relate = "+1_6")
) 

dat %>%
    gather(Time, Grade, -c(Name)) %>%
    mutate(Time = as.numeric(gsub("\\D", "", Time))) %>%
    ggplot(aes(x = Time, y = Grade, color = Name, group = Name)) +
        geom_line(size=.8) + 
        theme_bw()

Expanded Dummy Coding

The user may wish to expand a factor into j dummy coded columns. The r_dummy function expands a factor into j columns and works similar to the r_series function. The user may wish to use the original factor name as the prefix to the j columns. Setting prefix = TRUE within r_dummy accomplishes this.

set.seed(10)
r_data_frame(n=100,
    id,
    age,
    r_dummy(sex, prefix = TRUE),
    r_dummy(political)
)

## Source: local data frame [100 x 9]
## 
##       ID   Age Sex_Male Sex_Female Democrat Republican Constitution
##    (chr) (int)    (int)      (int)    (int)      (int)        (int)
## 1    001    28        1          0        1          0            0
## 2    002    24        1          0        1          0            0
## 3    003    26        1          0        0          1            0
## 4    004    31        1          0        0          1            0
## 5    005    21        0          1        1          0            0
## 6    006    23        0          1        0          1            0
## 7    007    24        0          1        0          1            0
## 8    008    24        1          0        0          0            0
## 9    009    29        0          1        1          0            0
## 10   010    26        1          0        0          1            0
## ..   ...   ...      ...        ...      ...        ...          ...
## Variables not shown: Libertarian (int), Green (int)

Visualizing Column Types

It is helpful to see the column types and NAs as a visualization. The table_heat (also the plot method assigned to tbl_df as well) can provide visual glimpse of data types and missing cells.

set.seed(10)

r_data_frame(n=100,
    id,
    dob,
    animal,
    grade, grade,
    death,
    dummy,
    grade_letter,
    gender,
    paragraph,
    sentence
) %>%
   r_na() %>%
   plot(palette = "Set1")

Copy Link

Version

Install

install.packages('wakefield')

Monthly Downloads

714

Version

0.3.0

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Tyler Rinker

Last Published

June 16th, 2016

Functions in wakefield (0.3.0)

area

Generate Random Vector of Areas
age

Generate Random Vector of Ages
coin

Generate Random Vector of Coin Flips
color

Generate Random Vector of Colors
animal_list

Animal List
car

Generate Random Vector of Cars
answer

Generate Random Vector of Answers (Yes/No)
as_integer

Convert a Factor Data Frame to Integer
animal

Generate Random Vector of animals
children

Generate Random Vector of Number of Children
death

Generate Random Vector of Deaths Outcomes
dice

Generate Random Vector of Dice Throws
education

Generate Random Vector of Educational Attainment Level
dob

Generate Random Vector of Birth Dates
date_stamp

Generate Random Vector of Dates
dna

Generate Random Vector of DNA Nucleobases
employment

Generate Random Vector of Employment Statuses
dummy

Generate Random Dummy Coded Vector
grade_level

Generate Random Vector of Grade Levels
eye

Generate Random Vector of Eye Colors
id

Identification Numbers
income

Generate Random Gamma Vector of Incomes
internet_browser

Generate Random Vector of Internet Browsers
grady_augmented

Augmented List of Grady Ward's English Words and Mark Kantrowitz's Names List
height

Generate Random Vector of Heights
grade

Generate Random Vector of Grades
hour

Generate a Random Sequence of H:M:S Times
group

Generate Random Vector of Control/Treatment Groups
interval

Cut Numeric Into Factor
hair

Generate Random Vector of Hair Colors
languages

Languages of the World
iq

Generate Random Vector of Intelligence Quotients (IQs)
language

Generate Random Vector of Languages
military

Generate Random Vector of Military Branches
minute

Generate a Random Sequence of Minutes in H:M:S Format
level

Generate Random Vector of Levels
likert

Generate Random Vector of Likert-Type Responses
upper

Generate Random Letter Vector
lorem_ipsum

Generate Random Lorem Ipsum Strings
marital

Generate Random Vector of Marital Statuses
print.variable

Prints a variable Object
presidential_debates_2012

2012 U.S. Presidential Debate Dialogue
print.available

Prints an available Object.
month

Generate Random Vector of Months
peek

Data Frame Viewing
plot.tbl_df

Plots a tbl_df Object
name

Generate Random Vector of Names
normal

Generate Random Normal Vector
name_neutral

Gender Neutral Names
political

Generate Random Vector of Political Parties
probs

Generate a Random Vector of Probabilities.
r_data_frame

Data Frame Production (From Variable Functions)
r_data

Pre-Selected Column Data Set
r_dummy

Title
r_sample_binary

Generate Random Binary Vector
r_na

Title
r_sample_integer

Generate Random Integer Vector
r_sample_factor

Generate Random Factor Vector
r_insert

Insert Data Frames Into r_data_frame
r_list

List Production (From Variable Functions)
religion

Generate Random Vector of Religions
relate

Create Related Numeric Columns
r_sample_replace

Generate Random Vector (Without Replacement)
sex_inclusive

Generate Random Vector of Non-Binary Genders
r_sample

Generate Random Vector
sex

Generate Random Vector of Genders
r_sample_logical

Generate Random Logical Vector
r_sample_ordered

Generate Random Ordered Factor Vector
state_populations

State Populations (2010)
state

Generate Random Vector of states
wakefield

Generate Random Data Sets
year

Generate Random Vector of Years
smokes

Generate Random Logical Smokes Vector
time_stamp

Generate a Random Sequence of Times in H:M:S Format
speed

Generate Random Vector of Speeds
r_series

Data Frame Series (Repeated Measures)
valid

Generate Random Logical Vector
race

Generate Random Vector of Races
string

Generate Random Vector of Strings
table_heat

View Data Table Column Types as Heat Map
variables

Available Variable Functions
varname

Add Internal Name to Vector
second

Generate a Random Sequence of Seconds in H:M:S Format
sat

Generate Random Vector of Scholastic Aptitude Test (SATs)
sentence

Generate Random Vector of Sentences
seriesname

Add Internal Name to Data Frame
zip_code

Generate Random Vector of Zip Codes