Generate a random vector of religion.
religion(
n,
x = c("Christian", "Muslim", "None", "Hindu", "Buddhist", "Folk", "Other", "Jewish"),
prob = c(0.31477, 0.23163, 0.16323, 0.14985, 0.07083, 0.05882, 0.00859, 0.00227),
name = "Religion"
)The number elements to generate. This can be globally set within
the environment of r_data_frame or r_list.
A vector of elements to chose from.
A vector of probabilities to chose from.
The name to assign to the output vector's varname
attribute. This is used to auto assign names to the column/vector name when
used inside of r_data_frame or r_list.
Returns a random factor vector of religion elements.
The religion and probabilities used match approximate world religion make-up (from Pew Research Center). The default make up is:
| Religion | N | Percent |
| Christian | 2,173,260,000 | 31.48 % |
| Muslim | 1,599,280,000 | 23.16 % |
| None | 1,127,000,000 | 16.32 % |
| Hindu | 1,034,620,000 | 14.99 % |
| Buddhist | 489,030,000 | 7.08 % |
| Folk | 406,140,000 | 5.88 % |
| Other | 59,330,000 | .86 % |
| Jewish | 15,670,000 | .23 % |
https://www.pewforum.org/2012/12/18/table-religious-composition-by-country-in-numbers/
Other variable functions:
age(),
animal(),
answer(),
area(),
car(),
children(),
coin(),
color,
date_stamp(),
death(),
dice(),
dna(),
dob(),
dummy(),
education(),
employment(),
eye(),
grade_level(),
grade(),
group(),
hair(),
height(),
income(),
internet_browser(),
iq(),
language,
level(),
likert(),
lorem_ipsum(),
marital(),
military(),
month(),
name,
normal(),
political(),
race(),
sat(),
sentence(),
sex_inclusive(),
sex(),
smokes(),
speed(),
state(),
string(),
upper(),
valid(),
year(),
zip_code()
# NOT RUN {
religion(10)
barplot(table(religion(10000)))
pie(table(religion(10000)))
# }
Run the code above in your browser using DataLab