# NOT RUN {
## Based on Figure 4 showing correlation structural breaks in Fernandez-Macho (2018).
library(wavemulcor)
options(warn = -1)
xrand1 <- wavemulcor::xrand1
xrand2 <- wavemulcor::xrand2
N <- length(xrand1)
b <- trunc(N/3)
t1 <- 1:b
t2 <- (b+1):(2*b)
t3 <- (2*b+1):N
wf <- "d4"
M <- N/2^3 #sharper with N/2^4
window <- "gaussian"
J <- trunc(log2(N))-3
# ---------------------------
cor1 <- cor(xrand1[t1],xrand2[t1])
cor2 <- cor(xrand1[t2],xrand2[t2])
cor3 <- cor(xrand1[t3],xrand2[t3])
cortext <- paste0(round(100*cor1,0),"-",round(100*cor2,0),"-",round(100*cor3,0))
ts.plot(cbind(xrand1,xrand2),col=c("red","blue"),xlab="time")
xx <- data.frame(xrand1,xrand2)
# ---------------------------
xy.mulcor <- local.multiple.correlation(xx, M, window=window)
val <- as.matrix(xy.mulcor$val)
lo <- as.matrix(xy.mulcor$lo)
up <- as.matrix(xy.mulcor$up)
YmaxR <- as.matrix(xy.mulcor$YmaxR)
# ---------------------------
old.par <- par()
# ##Producing line plots with CI
title <- paste("Local Multiple Correlation")
sub <- paste("first",b,"obs:",round(100*cor1,1),"% correlation;","middle",b,"obs:",
round(100*cor2,1),"%","rest:",round(100*cor3,1),"%")
xlab <- "time"
ylab <- "correlation"
matplot(1:N,cbind(val,lo,up),
main=title, sub=sub,
xlab=xlab, ylab=ylab, type="l", lty=1, col= c(1,2,2), cex.axis=0.75)
abline(h=0) ##Add Straight horiz and vert Lines to a Plot
#reset graphics parameters
par(old.par)
# }
Run the code above in your browser using DataLab