Learn R Programming

waves (version 0.2.6)

rename: Functions renamed in waves 0.2.0

Description

`r lifecycle::badge('deprecated')`

waves 0.2.0 renamed a number of functions to ensure that every function name adheres to the tidyverse style guide.

* `AggregateSpectra()` -> `aggregate_spectra()` * `DoPreprocessing()` -> `pretreat_spectra()` * `FilterSpectra()` -> `filter_spectra()` * `FormatCV()` -> `format_cv()` * `PlotSpectra()` -> `plot_spectra()` * `PredictFromSavedModel()` -> `predict_spectra()` * `SaveModel()` -> `save_model()` * `TestModelPerformance()` -> `test_spectra()` * `TrainSpectralModel()` -> `train_spectra()`

Usage

AggregateSpectra(
  df,
  grouping.colnames = c("unique.id"),
  reference.value.colname = "reference",
  agg.function = "mean"
)

DoPreprocessing(df, test.data = NULL, pretreatment = 1)

FilterSpectra( df, filter = TRUE, return.distances = FALSE, num.col.before.spectra = 4, window.size = 10, verbose = TRUE )

FormatCV( trial1, trial2, trial3 = NULL, cv.scheme, stratified.sampling = TRUE, proportion.train = 0.7, seed = NULL, remove.genotype = FALSE )

PlotSpectra( df, num.col.before.spectra = 1, window.size = 10, detect.outliers = TRUE, color = NULL, alternate.title = NULL, verbose = TRUE )

PredictFromSavedModel( input.data, model.stats.location, model.location, model.method = "pls" )

SaveModel( df, save.model = TRUE, pretreatment = 1, model.save.folder = NULL, model.name = "PredictionModel", best.model.metric = "RMSE", k.folds = 5, proportion.train = 0.7, tune.length = 50, model.method = "pls", num.iterations = 10, stratified.sampling = TRUE, cv.scheme = NULL, trial1 = NULL, trial2 = NULL, trial3 = NULL, verbose = TRUE )

TestModelPerformance( train.data, num.iterations, test.data = NULL, pretreatment = 1, k.folds = 5, proportion.train = 0.7, tune.length = 50, model.method = "pls", best.model.metric = "RMSE", stratified.sampling = TRUE, cv.scheme = NULL, trial1 = NULL, trial2 = NULL, trial3 = NULL, split.test = FALSE, verbose = TRUE )

TrainSpectralModel( df, num.iterations, test.data = NULL, k.folds = 5, proportion.train = 0.7, tune.length = 50, model.method = "pls", best.model.metric = "RMSE", stratified.sampling = TRUE, cv.scheme = NULL, trial1 = NULL, trial2 = NULL, trial3 = NULL, split.test = FALSE, verbose = TRUE )

Arguments