
wave.variance(x, type="eta3", p=0.025)
wave.covariance(x, y)
wave.correlation(x, y, N, p=0.975)
gaussian
, eta1
,
eta2
, eta3
, nongaussian
Percival, D. B. (1995) Biometrika, 82, No. 3, 619-631.
Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.
Whitcher, B., P. Guttorp and D. B. Percival (2000) Wavelet Analysis of Covariance with Application to Atmospheric Time Series, Journal of Geophysical Research, 105, No. D11, 14,941-14,962.
## Figure 7.3 from Gencay, Selcuk and Whitcher (2001)
data(ar1)
ar1.modwt <- modwt(ar1, "haar", 6)
ar1.modwt.bw <- brick.wall(ar1.modwt, "haar")
ar1.modwt.var2 <- wave.variance(ar1.modwt.bw, type="gaussian")
ar1.modwt.var <- wave.variance(ar1.modwt.bw, type="nongaussian")
par(mfrow=c(1,1), las=1, mar=c(5,4,4,2)+.1)
matplot(2^(0:5), ar1.modwt.var2[-7,], type="b", log="xy",
xaxt="n", ylim=c(.025, 6), pch="*LU", lty=1, col=c(1,4,4),
xlab="Wavelet Scale", ylab="")
matlines(2^(0:5), as.matrix(ar1.modwt.var)[-7,2:3], type="b",
pch="LU", lty=1, col=3)
axis(side=1, at=2^(0:5))
legend(1, 6, c("Wavelet variance", "Gaussian CI", "Non-Gaussian CI"),
lty=1, col=c(1,4,3), bty="n")
## Figure 7.8 from Gencay, Selcuk and Whitcher (2001)
data(exchange)
returns <- diff(log(as.matrix(exchange)))
returns <- ts(returns, start=1970, freq=12)
wf <- "d4"
J <- 6
demusd.modwt <- modwt(returns[,"DEM.USD"], wf, J)
demusd.modwt.bw <- brick.wall(demusd.modwt, wf)
jpyusd.modwt <- modwt(returns[,"JPY.USD"], wf, J)
jpyusd.modwt.bw <- brick.wall(jpyusd.modwt, wf)
returns.modwt.cov <- wave.covariance(demusd.modwt.bw, jpyusd.modwt.bw)
par(mfrow=c(1,1), las=0, mar=c(5,4,4,2)+.1)
matplot(2^(0:(J-1)), returns.modwt.cov[-(J+1),], type="b", log="x",
pch="*LU", xaxt="n", lty=1, col=c(1,4,4), xlab="Wavelet Scale",
ylab="Wavelet Covariance")
axis(side=1, at=2^(0:7))
abline(h=0)
returns.modwt.cor <- wave.correlation(demusd.modwt.bw, jpyusd.modwt.bw,
N = dim(returns)[1])
par(mfrow=c(1,1), las=0, mar=c(5,4,4,2)+.1)
matplot(2^(0:(J-1)), returns.modwt.cor[-(J+1),], type="b", log="x",
pch="*LU", xaxt="n", lty=1, col=c(1,4,4), xlab="Wavelet Scale",
ylab="Wavelet Correlation")
axis(side=1, at=2^(0:7))
abline(h=0)
Run the code above in your browser using DataLab