
Last chance! 50% off unlimited learning
Sale ends in
mra.2d(x, wf = "la8", J = 4, method = "modwt", boundary = "periodic")
method="dwt"
."la8"
, the Daubechies orthonormal
compactly supported wavelet of length $L=8$ least asymmetric
family."dwt"
or "modwt"
.boundary=="periodic"
the default, then the matrix you
decompose is assumed to be periodic on its defined interval,
if boundary=="reflection"
, the matrix beyond its boMallat, S. G. (1998) A Wavelet Tour of Signal Processing, Academic Press.
dwt.2d
, modwt.2d
## Easy check to see if it works...
## --------------------------------
x <- matrix(rnorm(32*32), 32, 32)
# MODWT
x.mra <- mra.2d(x, method="modwt")
x.mra.sum <- x.mra[[1]]
for(j in 2:length(x.mra))
x.mra.sum <- x.mra.sum + x.mra[[j]]
sum((x - x.mra.sum)^2)
# DWT
x.mra <- mra.2d(x, method="dwt")
x.mra.sum <- x.mra[[1]]
for(j in 2:length(x.mra))
x.mra.sum <- x.mra.sum + x.mra[[j]]
sum((x - x.mra.sum)^2)
Run the code above in your browser using DataLab