
Last chance! 50% off unlimited learning
Sale ends in
This function performs a level
dwt(x, wf="la8", n.levels=4, boundary="periodic")
dwt.nondyadic(x)
a vector or time series containing the data be to decomposed. This must be a dyadic length vector (power of 2).
Name of the wavelet filter to use in the decomposition. By default
this is set to "la8"
, the Daubechies orthonormal compactly
supported wavelet of length
Specifies the depth of the decomposition. This must be a number
less than or equal to
Character string specifying the boundary condition. If
boundary=="periodic"
the default, then the vector you
decompose is assumed to be periodic on its defined interval,
if boundary=="reflection"
, the vector beyond its boundaries
is assumed to be a symmetric reflection of itself.
Basically, a list with the following components
Wavelet coefficient vectors.
Scaling coefficient vector.
Name of the wavelet filter used.
How the boundaries were handled.
The code implements the one-dimensional DWT using the pyramid algorithm (Mallat, 1989). The actual transform is performed in C using pseudocode from Percival and Walden (2001). That means convolutions, not inner products, are used to apply the wavelet filters.
For a non-dyadic length vector or time series, dwt.nondyadic
pads with zeros, performs the orthonormal DWT on this dyadic length
series and then truncates the wavelet coefficient vectors
appropriately.
Daubechies, I. (1992) Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM: Philadelphia.
Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press.
Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.
Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.
# NOT RUN {
## Figures 4.17 and 4.18 in Gencay, Selcuk and Whitcher (2001).
data(ibm)
ibm.returns <- diff(log(ibm))
## Haar
ibmr.haar <- dwt(ibm.returns, "haar")
names(ibmr.haar) <- c("w1", "w2", "w3", "w4", "v4")
## plot partial Haar DWT for IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(a)")
for(i in 1:4)
plot.ts(up.sample(ibmr.haar[[i]], 2^i), type="h", axes=FALSE,
ylab=names(ibmr.haar)[i])
plot.ts(up.sample(ibmr.haar$v4, 2^4), type="h", axes=FALSE,
ylab=names(ibmr.haar)[5])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
## LA(8)
ibmr.la8 <- dwt(ibm.returns, "la8")
names(ibmr.la8) <- c("w1", "w2", "w3", "w4", "v4")
## must shift LA(8) coefficients
ibmr.la8$w1 <- c(ibmr.la8$w1[-c(1:2)], ibmr.la8$w1[1:2])
ibmr.la8$w2 <- c(ibmr.la8$w2[-c(1:2)], ibmr.la8$w2[1:2])
for(i in names(ibmr.la8)[3:4])
ibmr.la8[[i]] <- c(ibmr.la8[[i]][-c(1:3)], ibmr.la8[[i]][1:3])
ibmr.la8$v4 <- c(ibmr.la8$v4[-c(1:2)], ibmr.la8$v4[1:2])
## plot partial LA(8) DWT for IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(b)")
for(i in 1:4)
plot.ts(up.sample(ibmr.la8[[i]], 2^i), type="h", axes=FALSE,
ylab=names(ibmr.la8)[i])
plot.ts(up.sample(ibmr.la8$v4, 2^4), type="h", axes=FALSE,
ylab=names(ibmr.la8)[5])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
# }
Run the code above in your browser using DataLab