wedge (version 1.0-3)

volume: The volume element

Description

The volume element in \(n\) dimensions

Usage

volume(n)
is.volume(K)

Arguments

n

Dimension of the space

K

Object of class kform

Details

Spivak phrases it well (theorem 4.6, page 82):

If \(V\) has dimension \(n\), it follows that \(\Lambda^n(V)\) has dimension 1. Thus all alternating \(n\)-tensors on \(V\) are multiples of any non-zero one. Since the determinant is an example of such a member of \(\Lambda^n(V)\) it is not surprising to find it in the following theorem:

Let \(v_1,\ldots,v_n\) be a basis for \(V\) and let \(\omega\in\Lambda^n(V)\). If \(w_i=\sum_{j=1}^n a_{ij}v_j\) then

$$ \omega\left(w_1,\ldots,w_n\right)=\det\left(a_{ij}\right)\cdot\omega\left(v_1,\ldots v_n\right)$$

(see the examples for numerical verification of this).

Neither the zero \(k\)-form, nor scalars, are considered to be a volume element.

References

Spivak

See Also

zeroform,as.1form

Examples

Run this code
# NOT RUN {
as.kform(1) %^% as.kform(2) %^% as.kform(3)  == volume(3)  # should be TRUE

o <- volume(5)
M <- matrix(runif(25),5,5)
det(M) - as.function(o)(M)   # should be zero


# }

Run the code above in your browser using DataLab