# Reliability data preparation:
## Data for mixture model:
data_mix <- reliability_data(
voltage,
x = hours,
status = status
)
## Data for simple unimodal distribution:
data <- reliability_data(
shock,
x = distance,
status = status
)
# Probability estimation with one method:
prob_mix <- estimate_cdf(
data_mix,
methods = "johnson"
)
prob <- estimate_cdf(
data,
methods = "johnson"
)
# Probability estimation for multiple methods:
prob_mix_mult <- estimate_cdf(
data_mix,
methods = c("johnson", "kaplan", "nelson")
)
# Example 1 - Mixture identification using k = 2 two-parametric Weibull models:
mix_mod_weibull <- mixmod_regression(
x = prob_mix,
distribution = "weibull",
conf_level = 0.99,
k = 2
)
# Example 2 - Mixture identification using k = 3 two-parametric lognormal models:
mix_mod_lognorm <- mixmod_regression(
x = prob_mix,
distribution = "lognormal",
k = 3
)
# Example 3 - Mixture identification for multiple methods specified in estimate_cdf:
mix_mod_mult <- mixmod_regression(
x = prob_mix_mult,
distribution = "loglogistic"
)
# Example 4 - Mixture identification using control argument:
mix_mod_control <- mixmod_regression(
x = prob_mix,
distribution = "weibull",
control = segmented::seg.control(display = TRUE)
)
# Example 5 - Mixture identification performs rank_regression for k = 1:
mod <- mixmod_regression(
x = prob,
distribution = "weibull",
k = 1
)
Run the code above in your browser using DataLab