powered by
weyl
The degree of a monomial weyl object \(x^a\partial^b\) is defined as \(a+b\). The degree of a general weyl object expressed as a linear combination of monomials is the maximum of the degrees of these monomials. Following Coutinho we have:
\(\mathrm{deg}(d_1+d_2)\leq\max(\mathrm{deg}(d_1)+ \mathrm{deg}(d_2))\)
\(\mathrm{deg}(d_1d_2) = \mathrm{deg}(d_1)+ \mathrm{deg}(d_2)\)
\(\mathrm{deg}(d_1d_2-d_2d_1)\leq\mathrm{deg}(d_1)+ \mathrm{deg}(d_2)-2\)
deg(S)
Nonnegative integer (or \(-\infty\) for the zero Weyl object)
Object of class weyl
Robin K. S. Hankin
(a <- rweyl()) deg(a) d1 <- rweyl(n=2) d2 <- rweyl(n=2) deg(d1+d2) <= deg(d1) + deg(d2) deg(d1*d2) == deg(d1) + deg(d2) deg(d1*d2-d2*d1) <= deg(d1) + deg(d2) -2
Run the code above in your browser using DataLab