Rdocumentation
powered by
Learn R Programming
widals (version 0.6.2)
Weighting by Inverse Distance with Adaptive Least Squares
Description
Computationally easy modeling, interpolation, forecasting of massive temporal-spacial data.
Copy Link
Link to current version
Version
Version
0.6.2
0.6.1
0.5.4
0.5.1
Install
install.packages('widals')
Monthly Downloads
195
Version
0.6.2
License
GPL (>= 2)
Maintainer
Dave Zes
Last Published
March 24th, 2025
Functions in widals (0.6.2)
Search all functions
create.rm.ndx.ls
Cross-Validation Indices
applystnd.Hst.ls
Standardize Space-Time Covariates with Existing Object
fuse.Hst.ls
Merge Contemporaneous Space-Time Covariates
unif.mh
Local Search Function
load.Hst.ls.2Zs
Load Observations into Space-Time Covariates
unload.Hst.ls
Convert a Space-Time Covariate into Data
stnd.Ht
Standardize Temporal Covariates
subsetsites.Hst.ls
Site-Wise Extract Space-Time Covariates
fun.load
Stochastic Search Helper Functions
widals.snow
Fit WIDALS
distance
Spacial Distance
crispify
Observation-Space Stochastic Correction
stnd.Hs
Standardize Spacial Covariates
stnd.Hst.ls
Standardize Space-Time Covariates
widals-package
Weighting by Inverse Distance with Adaptive Least Squares for Massive Space-Time Data
widals.predict
WIDALS Interpolation
Hals.snow
Fit ALS
O3
California Ozone
Hals.ses
Effective Standard Errors
H.Earth.solar
Solar Radiation
applystnd.Hs
Standardize Spacial Covariates with Existing Object
H.als.b
Adaptive Least Squares
Z.clean.up
Clean Data
Hals.fastcv.snow
ALS Spacial Cross-Validation
Hst.sumup
Create Covariance Matrix
MSS.snow
Metaheuristic Stochastic Search
dlog.norm
Local Search Function
load.Hst.ls.Z
Load Observations into Space-Time Covariates
rm.cols.Hst.ls
Remove Space-Time Covariates from Model