# NOT RUN {
## Create a random rectangular shapefile
library(sp)
Polygon1 <- Polygon(rbind(c(0, 0), c(0, 2000), c(2000, 2000), c(2000, 0)))
Polygon1 <- Polygons(list(Polygon1),1);
Polygon1 <- SpatialPolygons(list(Polygon1))
Projection <- "+init=epsg:3035"
proj4string(Polygon1) <- Projection
## Calculate a Grid and an indexed data.frame with coordinates and grid cell Ids.
Grid1 <- grid_area(shape = Polygon1,resol = 200,prop = 1);
Grid <- Grid1[[1]]
AmountGrids <- nrow(Grid)
startsel <- init_population(Grid,10,20);
wind <- data.frame(ws = 12, wd = 0)
wind <- list(wind, probab = 100)
fit <- fitness(selection = startsel,referenceHeight = 100, RotorHeight=100,
SurfaceRoughness=0.3,Polygon = Polygon1, resol1 = 200,rot=20,
dirspeed = wind, srtm_crop="",topograp=FALSE,cclRaster="")
allparks <- do.call("rbind",fit);
## SELECTION
## print the amount of Individuals selected.
## Check if the amount of Turbines is as requested.
selec6best <- selection(fit, Grid,2, TRUE, 6, "VAR");
## CROSSOVER
## u determines the amount of crossover points,
## crossPart determines the method used (Equal/Random),
## uplimit is the maximum allowed permutations
crossOut <- crossover(selec6best, 2, uplimit = 300, crossPart="RAN");
## MUTATION
## Variable Mutation Rate is activated if more than 2 individuals represent the
## current best solution.
mut <- mutation(a = crossOut, p = 0.3);
## TRIMTON
## After Crossover and Mutation, the amount of turbines in a windpark change
## and have to be corrected to the required amount of turbines.
mut1 <- trimton(mut = mut, nturb = 10, allparks = allparks,
nGrids = AmountGrids, trimForce=FALSE)
## Get the new Grid-Ids and run a new fitness run.
getRectV <- get_grids(mut1, Grid)
fit <- fitness(selection = getRectV,referenceHeight = 100, RotorHeight=100,
SurfaceRoughness=0.3,Polygon = Polygon1, resol1 = 200,rot=20,
dirspeed = wind, srtm_crop="",topograp=FALSE,cclRaster="")
head(fit)
# }
Run the code above in your browser using DataLab