Learn R Programming

wmtsa (version 1.1-1)

wavFDP: Class constructor for block- and time-dependent wavelet-based FD model parameter estimators

Description

Class constructor for block- and time-dependent wavelet-based FD model parameter estimators.

Usage

wavFDP(estimator, delta, variance.delta,
    innovations.variance, delta.range, dictionary, levels,
    edof.mode, boundary, series, sdf.method, type)

Arguments

estimator
character string briefly describing the estimator.
delta
numeric value/vector denoting the estimated FD model parameter.
innovations.variance
numeric value/vector denoting the estimated FD innovations variance.
variance.delta
numeric value/vector defining the variance of delta.
delta.range
two element numeric vector defining the range of delta.
dictionary
wavelet transform dictionary used in the analysis.
levels
vector of integers denoting the wavelet decomposition levels used in the analysis.
edof.mode
an integer on [1,3] defining the equivalent degrees of freedom mode used in the analysis.
boundary
a list containing named objects mode and description, containing a logical value and a character string, respectively. The mode object should be be TRUE if a boundary treatment was used, and descri
series
a signSeries object containing the input series.
sdf.method
a character string defining the SDF method used in the analysis, e.g., "Integration lookup table".
type
a character string defining the type of estimator, e.g., ""instantaneous"" or "block".

concept

class constructor

See Also

wavFDPBlock, wavFDPTime.

Examples

Run this code
## create a faux dictionary 
dictionary <- wavDictionary(wavelet="s8",
    dual=FALSE, decimate=FALSE, n.sample=512,
    attr.x=NULL, n.levels=5,
    boundary="periodic", conv=TRUE,
    filters=wavDaubechies("s8"),
    fast=TRUE, is.complex=FALSE)

## construct a faux wavFDP object 
z <- wavFDP(estimator="wlse",
    delta=0.45,
    variance.delta=1.0,
    innovations.variance=1.0,
    delta.range=c(-10.0,10.0),
    dictionary=dictionary,
    levels=c(1,3:4),
    edof.mode=2,
    boundary=list(mode=TRUE,description="unbiased"),
    series=create.signalSeries(fdp045),
    sdf.method="Integration lookup table",
    type="block")

## print the result 
print(z)

Run the code above in your browser using DataLab