Return main poverty and inequality statistics
pip_data(
country = NULL,
year = NULL,
povline = 2.15,
popshare = NULL,
fill_gaps = FALSE,
welfare_type = c("all", "consumption", "income"),
reporting_level = c("all", "national", "rural", "urban"),
additional_ind = FALSE,
release_version = NULL,
ppp_version = NULL,
version = NULL
)A data.frame() with the requested statistics.
(character()) countries for which statistics are to be computed,
specified as ISO3 codes. Default NULL.
(character() | numeric()) year(s) for which statistics are to be
computed, specified as YYYY. Default NULL.
(numeric(1)) poverty line to be used to compute poverty mesures.
Poverty lines are only accepted up to 3 decimals. Default 2.15.
(numeric(1)) proportion of the population living below the poverty
line. Will be ignored if povline is specified. Default NULL.
(logical(1)) whether to fill gaps in the data. Default FALSE.
(character(1)) type of welfare measure to be used.
Default "all".
(character(1)) level of reporting for the statistics.
Default "all".
(logical(1)) whether to include additional indicators.
Default FALSE.
(character(1)) version of the data release in YYYYMMDD
format. Default NULL.
(character(1) | numeric(1)) version of the data.
Default NULL.
(character(1)) version of the data. Default NULL.
Other poverty and inequality statistics:
pip_aux(),
pip_citation(),
pip_group(),
pip_health_check(),
pip_info(),
pip_valid_params(),
pip_versions()
# \donttest{
pip_data(c("ZAF", "ZMB"))
# }
Run the code above in your browser using DataLab