This function calculates the AUC (area under the curve) from ROC data in matrix of specificity and sensitivity values,
as provided in the output from summarizeForROC
.
AucROC(
dat,
useCol = c("spec", "sens"),
returnIfInvalid = NA,
silent = FALSE,
debug = FALSE,
callFrom = NULL
)
This function returns a matrix including imputed values or list of final and matrix with number of imputed by group (plus optional plot)
(matrix or data.frame) main inut containig sensitivity and specificity data (from summarizeForROC
)
(character or integer) column names to be used: 1st for specificity and 2nd for sensitivity count columns
(NA
or NULL
) what to return if data for calculating ROC is invalid or incomplete
(logical) suppress messages
(logical) additional messages for debugging
(character) allows easier tracking of messages produced
preparing ROC data summarizeForROC
, (re)plot the ROC figure plotROC
;
note that numerous other packages also provide support for working with ROC-curves : Eg rocPkgShort,
ROCR, pROC or ROCit, etc.
set.seed(2019); test1 <- list(annot=cbind(Species=c(rep("b",35), letters[sample.int(n=3,
size=150,replace=TRUE)])), BH=matrix(c(runif(35,0,0.01), runif(150)), ncol=1))
roc1 <- summarizeForROC(test1, spec=c("a","b","c"), annotCol="Species")
AucROC(roc1)
Run the code above in your browser using DataLab