Learn R Programming

wrProteo (version 1.5.0)

AucROC: AUC from ROC-curves

Description

This function calculates the AUC (area under the curve) from ROC data in matrix of specificity and sensitivity values, as provided in the output from summarizeForROC. Note that numerous other packages also provide support for working with ROC-curves : Eg rocPkgShort, ROCR, pROC or ROCit

Usage

AucROC(dat, useCol = c("spec", "sens"), silent = FALSE, callFrom = NULL)

Arguments

dat

(matrix or data.frame) main inut containig sensitivity and specificity data (from summarizeForROC)

useCol

(character or integer) column names to be used: 1st for specificity and 2nd for sensitivity count columns

silent

(logical) suppress messages

callFrom

(character) allows easier tracking of message(s) produced

Value

matrix including imputed values or list of final and matrix with number of imputed by group (plus optional plot)

See Also

preparing ROC data summarizeForROC, (re)plot the ROC figure plotROC

Examples

Run this code
# NOT RUN {
set.seed(2019); test1 <- list(annot=cbind(spec=c(rep("b",35),letters[sample.int(n=3,
  size=150,replace=TRUE)])), BH=matrix(c(runif(35,0,0.01),runif(150)),ncol=1))
roc1 <- summarizeForROC(test1,spec=c("a","b","c"))
AucROC(roc1)
# }

Run the code above in your browser using DataLab