Learn R Programming

wrapr (version 2.1.0)

clean_fit_glm: Fit a stats::glm without carying back large structures.

Description

Please see https://win-vector.com/2014/05/30/trimming-the-fat-from-glm-models-in-r/ for discussion.

Usage

clean_fit_glm(
  outcome,
  variables,
  data,
  ...,
  family,
  intercept = TRUE,
  outcome_target = NULL,
  outcome_comparator = "==",
  weights = NULL,
  env = baseenv()
)

Value

list(model=model, summary=summary)

Arguments

outcome

character, name of outcome column.

variables

character, names of varaible columns.

data

data.frame, training data.

...

not used, force later arguments to be used by name

family

passed to stats::glm()

intercept

logical, if TRUE allow an intercept term.

outcome_target

scalar, if not NULL write outcome==outcome_target in formula.

outcome_comparator

one of "==", "!=", ">=", "<=", ">", "<", only use of outcome_target is not NULL.

weights

passed to stats::glm()

env

environment to work in.

Examples

Run this code

mk_data_example <- function(k) {
  data.frame(
    x1 = rep(c("a", "a", "b", "b"), k),
    x2 = rep(c(0, 0, 0, 1), k),
    y = rep(1:4, k),
    yC = rep(c(FALSE, TRUE, TRUE, TRUE), k),
    stringsAsFactors = FALSE)
}

res_glm <- clean_fit_glm("yC", c("x1", "x2"),
                         mk_data_example(1),
                         family = binomial)
length(serialize(res_glm$model, NULL))

res_glm <- clean_fit_glm("yC", c("x1", "x2"),
                         mk_data_example(10000),
                         family = binomial)
length(serialize(res_glm$model, NULL))

predict(res_glm$model,
        newdata = mk_data_example(1),
        type = "response")

Run the code above in your browser using DataLab