Average Relative Increase in Variance
ARIVwrapper(between, within, M, k)Returns a numeric vector of length one.
Numeric matrix. Covariance between imputations \(\mathbf{V}_{\mathrm{between}}\).
Numeric matrix. Covariance within imputations \(\mathbf{V}_{\mathrm{within}}\).
Positive integer. Number of imputations.
Positive integer. Number of parameters.
Ivan Jacob Agaloos Pesigan
The average relative increase in variance is given by $$ \mathrm{ARIV} = \left( 1 + M^{-1} \right) \mathrm{tr} \left( \mathbf{V}_{\mathrm{between}} \mathbf{V}_{\mathrm{within}}^{-1} \right) $$