library("wsrf")
# Prepare parameters.
ds <- rattle::weather
target <- "RainTomorrow"
vars <- setdiff(names(ds), c("Date", "Location", "RISK_MM"))
if (sum(is.na(ds[vars]))) ds[vars] <- randomForest::na.roughfix(ds[vars])
ds[target] <- as.factor(ds[[target]])
form <- as.formula(paste(target, "~ ."))
set.seed(42)
train.1 <- sample(nrow(ds), 0.7*nrow(ds))
test.1 <- setdiff(seq_len(nrow(ds)), train.1)
set.seed(49)
train.2 <- sample(nrow(ds), 0.7*nrow(ds))
test.2 <- setdiff(seq_len(nrow(ds)), train.2)
# Build model.
model.wsrf.1 <- wsrf(form, data=ds[train.1, vars])
model.wsrf.2 <- wsrf(form, data=ds[train.2, vars])
# Merge two models.
model.wsrf.big <- combine.wsrf(model.wsrf.1, model.wsrf.2)
print(model.wsrf.big)
cl <- predict(model.wsrf.big, newdata=ds[test.1, vars], type="response")
actual <- ds[test.1, target]
(accuracy.wsrf <- sum(cl==actual)/length(actual))
Run the code above in your browser using DataLab