require(wux)
### ENSEMBLES RCM analysis
data(ensembles)
## Not run: plot(ensembles, "perc.delta.precipitation_amount",
# "delta.air_temperature", boxplots = TRUE, xlim = c(-40,40),
# ylim = c(0, 4), label.only.these.models = c("ICTP-REGCM3", "MPI-M-REMO"),
# xlab = "Precipitation Amount [%]", ylab = "2-m Air Temperature [K]",
# main = "Scatterplot", subreg.subset = c("GAR"))
# ## End(Not run)
### now see where ENSMEBLES GCMs lie within CMIP3 ensemble
data(ensembles_gcms) # GCMs for forcing of ENSEMBLES RCMs
data(cmip3_2050) # GCMs of CMIP3 ensemble
ensembles.gcm.names <- levels(ensembles_gcms$acronym) #8 GCM names
cmip3_2050.sub <- subset(cmip3_2050, subreg %in% c("World", "EU.ENS")
& em.scn == "A1B")
cmip3_2050.sub <- droplevels(cmip3_2050.sub)
ensembles_gcms.sub <- subset(ensembles_gcms, !acronym %in%
c("mpi_echam5-r3", "bccr_bcm2_0-r1",
"ipsl_cm4-r2"))
ensembles_gcms.sub <- droplevels(ensembles_gcms.sub)
## combine cmip3 and ENSEMBLES GCMs in one data.frame
gcms.combined <- rbind(ensembles_gcms.sub, cmip3_2050.sub)
## Scatterplot
prec.range <- range(gcms.combined$perc.delta.precipitation_amount) + c(-1, 1)
tas.range <- range(gcms.combined$delta.air_temperature)
## Not run: plot(gcms.combined,
# "perc.delta.precipitation_amount", "delta.air_temperature",
# subreg.subset = "EU.ENS", draw.median.lines = FALSE,
# label.only.these.models = ensembles.gcm.names,
# xlim = prec.range,
# ylim = tas.range,
# main = "GCMs from ENSEMBLES project within CMIP3 SRESA1B ensemble",
# draw.seperate.legend = TRUE)## End(Not run)
Run the code above in your browser using DataLab