Learn R Programming

wux (version 2.2-1)

plot.wux.df: X - Y Scatterplot of climate change signals

Description

plot.wux.df plots one or more scatterplots containing climate change signals of selected meteorological parameters.

This plotting routine extracts all the information from the input data frame which has to be 'WUX-style' (see models2wux).

Usage

"plot"(x, var1.name = "delta.air_temperature", var2.name = "perc.delta.precipitation_amount", subreg.subset = NULL, season.subset = NULL, boxplots = TRUE, label.only.these.models = NULL, highlight.models = NULL, no.text = FALSE, vert.box.col = "cyan", horiz.box.col = "coral", zero.line.col = "gray80", median.line.col = "black", draw.legend = TRUE, draw.seperate.legend = FALSE, draw.median.lines = TRUE, use.rainbow.colors = TRUE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, main = NULL, out.file.directory = NULL, out.file.name = NULL, copyright = FALSE, ...)

Arguments

x
WUX data.frame (class wux.df) obtained from models2wux'.
var1.name
Character string of 1st parameter in WUX dataset. Default is temperature change.
var2.name
Character string of 2nd parameter in WUX dataset. Default is precipitation change.
subreg.subset
Vector of subregions to be plotted (e.g. c("EU.ENS", "GAR")).
season.subset
Vector of seasons to be plotted (e.g. c("MAM", "DJF")).
boxplots
Boolean. Indicating if marginal boxplots for the two input parameters should be plotted. Default is TRUE.
label.only.these.models
Character vector of modelnames (acronyms) to be labeled in the scatterplot.
highlight.models
Character vector of modelnames (acronyms) to be highlighted in the scatterplot.
no.text
Boolean. Indicating if no models should be labeled. Default is FALSE.
vert.box.col
Color character for vertical boxplot. Default is coral.
horiz.box.col
Color character for horizontal boxplot. Default is cyan.
zero.line.col
Color character for the zero lines. Default is gray80.
median.line.col
Color character for the median lines. Default is black.
use.rainbow.colors
Boolean. Use rainbow() color palette if TRUE, otherwise a custom color palette with 17 colors is used. Default is TRUE.
xlim
Range vector for 1st parameter (x-axis).
ylim
Range vector for 2nd parameter (y-axis).
xlab
Label of 1st parameter (x-axis).
ylab
Label of 2nd parameter (y-axis).
draw.legend
Boolean. Indicating if legend with GCMs should be plotted. Default is TRUE.
draw.seperate.legend
Boolean. Should legend with GCMs be plotted on a seperate screen? Default is FALSE. Draws legend even if draw.legend is set FALSE.
draw.median.lines
Draw median lines for both parameters. Default is TRUE.
main
Main title.
out.file.directory
Directory where the plots shall be exported (e.g. "/tmp/plots/"). If neither out.file.name nor out.file.directory are passed, the plot will be displyed on screen.
out.file.name
Prefix of the file names of the plots. Files will be stored as out.file.name_subreg_season.eps, where subreg is one realization of the subreg.subset argument and season is one realization of season.subset. For example: out.file.name = "scatterplot" will store to the files scatterplot_EUROPE_DJF.eps and scatterplot_EUROPE_JJA.eps. If neither out.file.name nor out.file.directory are passed, the plot will be displyed on screen.
copyright
Boolean. If a copyright message should be plotted. Default is FALSE.
...
Further optional arguments to be passed to plot, such as graphical parameters (see par).

Examples

Run this code
require(wux)

### ENSEMBLES RCM analysis
data(ensembles)

## Not run: plot(ensembles, "perc.delta.precipitation_amount",
#   "delta.air_temperature", boxplots = TRUE, xlim = c(-40,40),
#   ylim = c(0, 4), label.only.these.models = c("ICTP-REGCM3", "MPI-M-REMO"), 
#   xlab = "Precipitation Amount [%]", ylab = "2-m Air Temperature [K]",
#   main = "Scatterplot", subreg.subset = c("GAR"))
# ## End(Not run)

### now see where ENSMEBLES GCMs lie within CMIP3 ensemble
data(ensembles_gcms) # GCMs for forcing of ENSEMBLES RCMs
data(cmip3_2050)     # GCMs of CMIP3 ensemble

ensembles.gcm.names <- levels(ensembles_gcms$acronym) #8 GCM names

cmip3_2050.sub <- subset(cmip3_2050, subreg %in% c("World", "EU.ENS")
                       & em.scn == "A1B") 
cmip3_2050.sub <- droplevels(cmip3_2050.sub)
ensembles_gcms.sub <- subset(ensembles_gcms, !acronym %in%
                                c("mpi_echam5-r3", "bccr_bcm2_0-r1",
                                  "ipsl_cm4-r2"))
ensembles_gcms.sub <- droplevels(ensembles_gcms.sub)
## combine cmip3 and ENSEMBLES GCMs in one data.frame
gcms.combined <- rbind(ensembles_gcms.sub, cmip3_2050.sub)

## Scatterplot
prec.range <- range(gcms.combined$perc.delta.precipitation_amount) + c(-1, 1)
tas.range <- range(gcms.combined$delta.air_temperature)
## Not run: plot(gcms.combined,
#                "perc.delta.precipitation_amount", "delta.air_temperature",
#                subreg.subset = "EU.ENS", draw.median.lines = FALSE,
#                label.only.these.models = ensembles.gcm.names,
#                xlim = prec.range,
#                ylim = tas.range,
#                main = "GCMs from ENSEMBLES project within CMIP3 SRESA1B ensemble",
#                draw.seperate.legend = TRUE)## End(Not run)




Run the code above in your browser using DataLab