Parse a boosted tree model text dump

Parse a boosted tree model text dump into a data.table structure.

xgb.model.dt.tree(feature_names = NULL, model = NULL, text = NULL,
  n_first_tree = NULL)

character vector of feature names. If the model already contains feature names, this argument should be NULL (default value)


object of class xgb.Booster


character vector previously generated by the xgb.dump function (where parameter with_stats = TRUE should have been set).


limit the parsing to the n first trees. If set to NULL, all trees of the model are parsed.


A data.table with detailed information about model trees' nodes.

The columns of the data.table are:

  • Tree: ID of a tree in a model

  • Node: ID of a node in a tree

  • ID: unique identifier of a node in a model

  • Feature: for a branch node, it's a feature id or name (when available); for a leaf note, it simply labels it as 'Leaf'

  • Split: location of the split for a branch node (split condition is always "less than")

  • Yes: ID of the next node when the split condition is met

  • No: ID of the next node when the split condition is not met

  • Missing: ID of the next node when branch value is missing

  • Quality: either the split gain (change in loss) or the leaf value

  • Cover: metric related to the number of observation either seen by a split or collected by a leaf during training.

  • xgb.model.dt.tree
# Basic use:

data(agaricus.train, package='xgboost')

bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2, 
               eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")

(dt <- xgb.model.dt.tree(colnames(agaricus.train$data), bst))

# How to match feature names of splits that are following a current 'Yes' branch:

merge(dt, dt[, .(ID, Y.Feature=Feature)], by.x='Yes', by.y='ID', all.x=TRUE)[order(Tree,Node)]
# }
Documentation reproduced from package xgboost, version, License: Apache License (== 2.0) | file LICENSE

Community examples

Looks like there are no examples yet.