# \donttest{
data("dataCancer")
# load the data set in the package
library("survival")
library("numDeriv")
library("survexp.fr")
data("simuData", package = "xhaz") # load the data sets 'simuData'
#define the levels of variable sex
# Esteve et al. model
fit.estv1 <- xhaz(formula = Surv(time_year, status) ~ agec + race,
data = simuData, ratetable = survexp.us,
interval = c(0, NA, NA, NA, NA, NA, max(simuData$time_year)),
rmap = list(age = 'age', sex = 'sex', year = 'date'),
baseline = "constant", pophaz = "classic")
predict_est <- predict(object = fit.estv1,
new.data = simuData,
times.pts = c(seq(0, 4, 0.1)),
baseline = TRUE)
plot(predict_est, what = "survival",
xlab = "time since diagnosis (year)",
ylab = "net survival", ylim = c(0, 1))
data("dataCancer", package = "xhaz") # load the data set in the package
fit.phBS <- xhaz(
formula = Surv(obs_time_year, event) ~ ageCentre + immuno_trt,
data = dataCancer, ratetable = survexp.fr::survexp.fr,
interval = c(0, NA, NA, max(dataCancer$obs_time_year)),
rmap = list(age = 'age', sex = 'sexx', year = 'year_date'),
baseline = "bsplines", pophaz = "classic")
predict_mod1 <- predict(object = fit.phBS, new.data = dataCancer,
times.pts = c(seq(0, 10, 0.1)), baseline = FALSE)
old.par <- par(no.readonly = TRUE)
par(mfrow = c(2, 1))
plot(predict_mod1, what = "survival",
xlab = "time since diagnosis (year)",
ylab = "net survival", ylim = c(0, 1))
plot(predict_mod1, what = "hazard",
xlab = "time since diagnosis (year)",
ylab = "excess hazard")
par(old.par)
# }
Run the code above in your browser using DataLab