Learn R Programming

xplainfi (version 1.0.0)

CFI: Conditional Feature Importance

Description

Implementation of CFI using modular sampling approach

Arguments

Super classes

xplainfi::FeatureImportanceMethod -> xplainfi::PerturbationImportance -> CFI

Methods

Inherited methods


Method new()

Creates a new instance of the CFI class

Usage

CFI$new(
  task,
  learner,
  measure = NULL,
  resampling = NULL,
  features = NULL,
  groups = NULL,
  relation = "difference",
  n_repeats = 1L,
  batch_size = NULL,
  sampler = NULL
)

Arguments

task, learner, measure, resampling, features, groups, relation, n_repeats, batch_size

Passed to PerturbationImportance.

sampler

(ConditionalSampler) Optional custom sampler. Defaults to instantiating ConditionalARFSampler internally with default parameters.


Method compute()

Compute CFI scores

Usage

CFI$compute(
  n_repeats = NULL,
  batch_size = NULL,
  store_models = TRUE,
  store_backends = TRUE
)

Arguments

n_repeats

(integer(1)) Number of permutation iterations. If NULL, uses stored value.

batch_size

(integer(1) | NULL: NULL) Maximum number of rows to predict at once. If NULL, uses stored value.

store_models, store_backends

(logical(1): TRUE) Whether to store fitted models / data backends, passed to mlr3::resample internally for the initial fit of the learner. This may be required for certain measures and is recommended to leave enabled unless really necessary.


Method clone()

The objects of this class are cloneable with this method.

Usage

CFI$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Blesch K, Koenen N, Kapar J, Golchian P, Burk L, Loecher M, Wright M (2025). “Conditional Feature Importance with Generative Modeling Using Adversarial Random Forests.” Proceedings of the AAAI Conference on Artificial Intelligence, 39(15), 15596--15604. tools:::Rd_expr_doi("10.1609/aaai.v39i15.33712").