if (FALSE) {
# This not-run block is to show how the dataset was generated
# This is also available in data-raw of the github repo
one.cmt <- function() {
ini({
## You may label each parameter with a comment
tka <- 0.45 # Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
## This works with interactive models
## You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
## the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
# Not sure how one does this with linCmt(), if that has to be posthoc
d/dt(depot) = -ka*depot
d/dt(cent) = ka*depot - cl*cent/v
cp = cent/v
blqlike = pnorm( (LLOQ - cp)/add.sd ) # blq likelihood for diagnostics
cp ~ add(add.sd)
})
}
theo_sdcens=nlmixr2data::theo_sd
good_lloq <- quantile(theo_sdcens[theo_sdcens$EVID==0,]$DV, 0.15)
theo_sdcens$CENS=ifelse(theo_sdcens$DV% # modified from catdv_vs_dvprobs example
set_var_types(catdv=CENS,dvprobs=BLQLIKE) %>%
set_dv_probs(1, 1~BLQLIKE, .dv_var = CENS) %>%
set_var_levels(1, CENS = lvl_bin()) %>%
catdv_vs_dvprobs(xlab = "basic", quiet = TRUE)
Run the code above in your browser using DataLab