These functions plot absolute differences in PRED, IPRED, WRES, CWRES and IWRES against covariates for two specified model fits.
absval.dcwres.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "CWRES|")),
main = "Default",
...
)absval.dipred.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "IPRED|")),
main = "Default",
...
)
absval.diwres.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "IWRES|")),
main = "Default",
...
)
absval.dpred.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "PRED|")),
main = "Default",
...
)
absval.dwres.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "WRES|")),
main = "Default",
...
)
Returns a stack of plots comprising comparisons of PRED, IPRED, WRES (or CWRES) and IWRES for the two specified runs.
An xpose.data object.
An xpose.data object. If not supplied, the user will be prompted.
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines.
A string giving the label for the y-axis. NULL
if none.
The title of the plot. If "Default"
then a default title
is plotted. Otherwise the value should be a string like "my title"
or
NULL
for no plot title.
Other arguments passed to link{xpose.plot.default}
.
absval.dcwres.vs.cov.model.comp()
: The absolute differences in individual predictions
against covariates for two specified model fits.
absval.dipred.vs.cov.model.comp()
: The absolute differences in individual predictions
against covariates for two specified model fits.
absval.diwres.vs.cov.model.comp()
: The absolute differences in individual weighted
residuals
against covariates for two specified model fits.
absval.dpred.vs.cov.model.comp()
: The absolute differences in population predictions
against covariates for two specified model fits.
absval.dwres.vs.cov.model.comp()
: The absolute differences in
population weighted residuals
against covariates for two specified model fits.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
Conditional weighted residuals (CWRES) may require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
if (FALSE) {
## We expect to find the required NONMEM run and table files for runs
## 5 and 6 in the current working directory
xpdb5 <- xpose.data(5)
xpdb6 <- xpose.data(6)
## A basic dWRES plot, without prompts
absval.dwres.vs.cov.model.comp(xpdb5, xpdb6)
## Custom colours and symbols, no user IDs
absval.dpred.vs.cov.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL)
}
Run the code above in your browser using DataLab