Learn R Programming

xpose4 (version 4.7.3)

iwres.vs.idv: Individual weighted residuals (IWRES) plotted against the independent variable (IDV) for Xpose 4

Description

This is a plot of individual weighted residuals (IWRES) vs the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

iwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)

Value

Returns an xyplot of IWRES vs IDV.

Arguments

object

An xpose.data object.

abline

Vector of arguments to the panel.abline function. No abline is drawn if NULL. Here, the default is c(0,0), specifying a horizontal line at y=0.

smooth

Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.

...

Other arguments passed to link{xpose.plot.default}.

Author

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

See Also

xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw(), absval.cwres.vs.pred(), absval.cwres.vs.pred.by.cov(), absval.iwres.cwres.vs.ipred.pred(), absval.iwres.vs.cov.bw(), absval.iwres.vs.idv(), absval.iwres.vs.ipred(), absval.iwres.vs.ipred.by.cov(), absval.iwres.vs.pred(), absval.wres.vs.cov.bw(), absval.wres.vs.idv(), absval.wres.vs.pred(), absval.wres.vs.pred.by.cov(), absval_delta_vs_cov_model_comp, addit.gof(), autocorr.cwres(), autocorr.iwres(), autocorr.wres(), basic.gof(), basic.model.comp(), cat.dv.vs.idv.sb(), cat.pc(), cov.splom(), cwres.dist.hist(), cwres.dist.qq(), cwres.vs.cov(), cwres.vs.idv(), cwres.vs.idv.bw(), cwres.vs.pred(), cwres.vs.pred.bw(), cwres.wres.vs.idv(), cwres.wres.vs.pred(), dOFV.vs.cov(), dOFV.vs.id(), dOFV1.vs.dOFV2(), data.checkout(), dv.preds.vs.idv(), dv.vs.idv(), dv.vs.ipred(), dv.vs.ipred.by.cov(), dv.vs.ipred.by.idv(), dv.vs.pred(), dv.vs.pred.by.cov(), dv.vs.pred.by.idv(), dv.vs.pred.ipred(), gof(), ind.plots(), ind.plots.cwres.hist(), ind.plots.cwres.qq(), ipred.vs.idv(), iwres.dist.hist(), iwres.dist.qq(), kaplan.plot(), par_cov_hist, par_cov_qq, parm.vs.cov(), parm.vs.parm(), pred.vs.idv(), ranpar.vs.cov(), runsum(), wres.dist.hist(), wres.dist.qq(), wres.vs.idv(), wres.vs.idv.bw(), wres.vs.pred(), wres.vs.pred.bw(), xpose.VPC(), xpose.VPC.both(), xpose.VPC.categorical(), xpose4-package

Examples

Run this code
## Here we load the example xpose database 
xpdb <- simpraz.xpdb

iwres.vs.idv(xpdb)

## A conditioning plot
iwres.vs.idv(xpdb, by="HCTZ")

Run the code above in your browser using DataLab