Learn R Programming

xpose4 (version 4.7.3)

parm.vs.parm: Plot parameters vs other parameters

Description

This function plots the parameter values stored in an Xpose data object versus each other in a series of graphs. The mirror functionality is available for this function.

Usage

parm.vs.parm(
  object,
  onlyfirst = TRUE,
  abline = FALSE,
  smooth = TRUE,
  type = "p",
  main = "Default",
  ...
)

Value

Returns a stack of xyplots and histograms of parameters against parameters.

Arguments

object

An xpose.data object.

onlyfirst

Logical value indicating whether only the first row per individual is included in the plot.

abline

Allows for a line of identity.

smooth

Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.

type

The plot type - defaults to points only.

main

The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.

...

Other arguments passed to xpose.plot.default.

Author

Andrew Hooker

Details

Each of the parameters in the Xpose data object, as specified in object@Prefs@Xvardef$parms, is plotted against the rest, creating a stack of plots.

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

See Also

Other specific functions: absval.cwres.vs.cov.bw(), absval.cwres.vs.pred(), absval.cwres.vs.pred.by.cov(), absval.iwres.cwres.vs.ipred.pred(), absval.iwres.vs.cov.bw(), absval.iwres.vs.idv(), absval.iwres.vs.ipred(), absval.iwres.vs.ipred.by.cov(), absval.iwres.vs.pred(), absval.wres.vs.cov.bw(), absval.wres.vs.idv(), absval.wres.vs.pred(), absval.wres.vs.pred.by.cov(), absval_delta_vs_cov_model_comp, addit.gof(), autocorr.cwres(), autocorr.iwres(), autocorr.wres(), basic.gof(), basic.model.comp(), cat.dv.vs.idv.sb(), cat.pc(), cov.splom(), cwres.dist.hist(), cwres.dist.qq(), cwres.vs.cov(), cwres.vs.idv(), cwres.vs.idv.bw(), cwres.vs.pred(), cwres.vs.pred.bw(), cwres.wres.vs.idv(), cwres.wres.vs.pred(), dOFV.vs.cov(), dOFV.vs.id(), dOFV1.vs.dOFV2(), data.checkout(), dv.preds.vs.idv(), dv.vs.idv(), dv.vs.ipred(), dv.vs.ipred.by.cov(), dv.vs.ipred.by.idv(), dv.vs.pred(), dv.vs.pred.by.cov(), dv.vs.pred.by.idv(), dv.vs.pred.ipred(), gof(), ind.plots(), ind.plots.cwres.hist(), ind.plots.cwres.qq(), ipred.vs.idv(), iwres.dist.hist(), iwres.dist.qq(), iwres.vs.idv(), kaplan.plot(), par_cov_hist, par_cov_qq, parm.vs.cov(), pred.vs.idv(), ranpar.vs.cov(), runsum(), wres.dist.hist(), wres.dist.qq(), wres.vs.idv(), wres.vs.idv.bw(), wres.vs.pred(), wres.vs.pred.bw(), xpose.VPC(), xpose.VPC.both(), xpose.VPC.categorical(), xpose4-package

Examples

Run this code

if (FALSE) {
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)


parm.vs.parm(xpdb)


parm.vs.parm(xpdb,mirror=3)
}

Run the code above in your browser using DataLab