This creates a stack of plots of Bayesian random parameter estimates plotted
against covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
ranpar.vs.cov(
object,
onlyfirst = TRUE,
smooth = TRUE,
type = "p",
main = "Default",
...
)
Returns a stack of xyplots and histograms of random parameters against covariates.
An xpose.data object.
Logical value indicating whether only the first row per individual is included in the plot.
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
The plot type - defaults to points only.
The title of the plot. If "Default"
then a default title
is plotted. Otherwise the value should be a string like "my title"
or
NULL
for no plot title.
Other arguments passed to link{xpose.plot.default}
.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
Each of the random parameters (ETAs) in the Xpose data object, as specified
in object@Prefs@Xvardef$ranpar
, is plotted against each covariate
present, as specified in object@Prefs@Xvardef$covariates
, creating a
stack of plots.
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
if (FALSE) {
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)
## A vanilla plot
ranpar.vs.cov(xpdb)
## Custom colours and symbols, IDs
ranpar.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
}
Run the code above in your browser using DataLab