These functions plot the parameter or covariate values stored in an Xpose data object using Q-Q plots.
cov.qq(object, onlyfirst = TRUE, main = "Default", ...)parm.qq(object, onlyfirst = TRUE, main = "Default", ...)
ranpar.qq(object, onlyfirst = TRUE, main = "Default", ...)
Delivers a stack of Q-Q plots.
An xpose.data object.
Logical value indicating if only the first row per individual is included in the plot.
The title of the plot.  If "Default" then a default title
is plotted. Otherwise the value should be a string like "my title" or
NULL for no plot title.
Other arguments passed to xpose.plot.qq.
cov.qq(): Covariate distributions
parm.qq(): parameter distributions
ranpar.qq(): random parameter distributions
Andrew Hooker & Justin Wilkins
Each of the parameters or covariates in the Xpose data object, as specified
in object@Prefs@Xvardef$parms, object@Prefs@Xvardef$ranpar or
object@Prefs@Xvardef$covariates, is evaluated in turn, creating a
stack of Q-Q plots.
A wide array of extra options controlling Q-Q plots are available. See
xpose.plot.qq for details.
xpose.plot.qq, xpose.panel.qq,
qqmath, xpose.data-class,
xpose.prefs-class
Other specific functions: 
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package
## Here we load the example xpose database 
xpdb <- simpraz.xpdb
## parameter histograms
parm.qq(xpdb)
## A stack of random parameter histograms
ranpar.qq(xpdb)
## Covariate distribution, in green with red line of identity
cov.qq(xpdb, col=11, ablcol=2)
Run the code above in your browser using DataLab